
 

 

 

 

MECH393 

Design 2: Machine Element Design 

Final Project Report 

 

GROUP 8 

Antoine MALENFANT  261051198 

Henri LAPOINTE   261048655 

Aidan KIMBERLEY  261004905 

Laurence LIANG    261056796 

 

 

 

December 7th, 2024 

Abstract: 

The goal of Solar Impulse, to circumnavigate the world with no fuel, requires a lightweight aircraft. 

This report outlines the design and optimization process for a gearbox intended for this project. 

The gearbox must adhere to power and size requirements while optimizing for weight. The gearbox 

has a double branch double reduction layout, and its components adhere to American Gear 

Manufacturers Association (AGMA) and American Society of Mechanical Engineers (ASME) 

standards. All components have a safety factor greater than 1.5, as is industry standard. Detailed 

analysis and computation lead to a final design weighing 47.38 lbs, outputting a shaft speed of 835 

RPM, with a total gear ratio of 6.558. The gearbox is lightweight and is designed to last the full 

lifetime of 2000 hours.  
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1. Introduction 

The goal of the Solar Impulse project is to fly around the globe with no fuel onboard. This poses 

many unique challenges, such as optimizing efficiency, weight, and safety. The objective of this 

project is to design a gearbox for this aircraft. We are supplied with unlimited funds for this project 

which leads to a high-performance design made to minimize weight. Our gearbox is a double 

branch double reduction gearbox with the general layout given in Figure 1.  

 

Figure 1: Double Reduction Diagram. 

To be conservative we are considering our system to be operating at its maximum power ratings 

100% of the time. This means our motor driver, which is connected to the input shaft, will be 

operating at 60 HP at 5,500 RPM for 2,000 hours. The propeller, which is the output shaft, will be 

rotating at 835 RPM producing 1,000 lbs. of axial force. Additionally, our gearbox must be less 

than 30x45x45 cm in dimension. The gearbox specifications are tabulated in Table 1 below. 

Table 1: Gearbox Constraints. 

Gearbox Specifications 

Max Dimensions (X × Y × Z) [cm] 30 × 45 × 45 

Temperature Range [°C] [-40, 40] 

Gear Ratio 6.5882 

Power [HP] 60 

Safety Factor 1.5 

Propeller mass [kg] 100 

Thrust [lbs] 1000 

Lifetime [h] 2000 

Input RPM [rpm] 5500 

Output RPM [rpm] 835 

 

Given these constraints, we optimized our design for weight while holding a safety factor of 1.5 

due to the high-risk aerospace application. The components of our gearbox are the gears, shafts, 
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keys, and bearings. We iteratively designed these parts following American Gear Manufacturing 

Association (AGMA) and American Society of Mechanical Engineers (ASME) standards. Figure 

2 is a diagram of our gearbox and has the labels we will use to refer to specific parts in this report. 

 

Figure 2: Gearbox Diagram Labelled. 

2. Theoretical Development 

2.1 Gears 

2.1.1 Initial Comments 

Note that the gear ratio between gears 2-4 and 3-5 is equal to 1 since they are on the same shaft, 

i.e. they will have the same rotational velocity. 𝑁 refers to the number of teeth on a specified gear. 

Table 2: Gear Ratio Relationships. 

Gear Ratio Value 

Gear Ratio between 1 and 2, 𝑚21 𝑁2/𝑁1 

Gear Ratio between 1 and 3, 𝑚31 𝑁3/𝑁1 

Gear Ratio between 2 and 4, 𝑚42 1 

Gear Ratio between 3 and 5, 𝑚53 1 

Gear Ratio between 4 and 6, 𝑚64 𝑁6/𝑁4 

Gear Ratio between 5 and 6, 𝑚65 𝑁6/𝑁5 

 

All referenced Tables or Figures are in the Annex A and B. The theory behind the analysis process 

stems from the one described in Chapter 12 of Machine Design: An Integrated Approach by 

Norton. [1] 

2.1.2 Design Requirements 

Before diving into the design of the gears, requirements need to be specified. As explained in the 

problem description, the gears will need to output a rotational velocity of 835 rpm when subjected 
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to an input of 60 HP and an input rotational velocity of 5,500 rpm. The maximum lateral distance 

must be lower than the allowable distance in the wing axis. This value is found in the gear box size 

requirements and is equal to 45 cm, or 17.7 inches. The maximum lateral distance is given by 

either of the two following equations, (1) and (2).  

𝐿𝑤𝑖𝑛𝑔 𝑎𝑥𝑖𝑠 = 𝑑𝑔1 + 𝑑𝑔2 + 𝑑𝑔3 +
2

𝑝𝑑1
  (1) 

𝐿𝑤𝑖𝑛𝑔 𝑎𝑥𝑖𝑠 = 𝑑𝑔4 + 𝑑𝑔5 + 𝑑𝑔6 +
2

𝑝𝑑2
 (2) 

Where 𝑝𝑑1  corresponds to the diametral pitch of gears 1,2 and 3 and 𝑝𝑑2  corresponds to the 

diametral pitch of gears 4,5 and 6. 𝑑𝑔 corresponds to the pitch diameter of each gear. The allowable 

distance in the vertical axis is of the same value. Hence, the addendum diameter of the largest gear 

must not surpass 17.7 inches. As outlined by the project description, the mass of all gears must be 

minimized as much as possible. In terms of the gear design, this translates by having the lowest 

total volume. To approximate the total volume of the gears, each gear will be approximated as a 

cylinder of height equal to the face width of the gear and a cross-sectional area equal to the pitch 

circle. Consequently, our design will be optimized to have the lowest allowable pitch diameter and 

face width. Two types of failures will be evaluated for the gears: bending and surface contact (will 

also be denoted as pitting in this report) failure. Since this project will be completed for an 

aerospace industry application, the minimal safety factor for both types of failure are required to 

be equal or above 1.5. Additionally, a contact ratio between 1.4 and 2 is required as this ensures 

that the load is not concentrated on a singular tooth. It also accounts for errors in tooth spacing that 

can occur during manufacturing. Finally, the project requires us to use coarse gear, which entails 

that the diametral pitch of the gears should not surpass 20 (Table 12-2). The following table 

summarizes these requirements 

Table 3: Summary of Design Requirements for Gears. 

Parameter Requirement 

Length in wing axis <  17.7 𝑖𝑛. 

Length in vertical axis <  17.7 𝑖𝑛. 
Output RPM, 𝜔6 𝜔6 ≤  835 𝑟𝑝𝑚 

Safety Factor for Bending Failure, 𝑁𝑓𝑏 1.5 ≤ 𝑁𝑓𝑏 

Safety Factor for Pitting Failure, 𝑁𝑓𝑐 1.5 ≤ 𝑁𝑓𝑐 

Pitch Diameter, 𝑑𝑝 Minimal 

Face Width, 𝐹 Minimal 

Contact Ratio, 𝑚𝑝 1.4 <  𝑚𝑝 < 2 

Diametral Pitch, 𝑝𝑑 𝑝𝑑 < 20 
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Governing Equations for Gear Design 

The equations that governed the design decisions were the safety factor equations, which are 

functions of the stress and the fatigue strength equations. Those are listed below, in US units. 

Bending Stress: 𝜎𝑏 =
𝑊𝑡𝑝𝑑𝐾𝑎𝐾𝑚𝐾𝑠𝐾𝐵𝐾𝐼

𝐹𝐽𝐾𝜈
   (3) 

Bending Fatigue Strength: 𝑆𝑓𝑏 =
𝐾𝐿

𝐾𝑇𝐾𝑅
𝑆𝑓𝑏′    (4) 

Surface-contact Stress: 𝜎𝑐 = 𝐶𝑝√
𝑊𝑡𝐶𝑎𝐶𝑚𝐶𝑠𝐶𝑓

𝐹𝐼𝑑𝐶𝜈
    (5)  

Surface-contact Fatigue Strength: 𝑆𝑓𝑐 =
𝐶𝐿𝐶𝐻

𝐶𝑇𝐶𝑅
𝑆𝑓𝑐′    (6) 

Bending Safety Factor: 𝑁𝑓𝑏 =
𝑆𝑓𝑏

𝜎𝑏
   (7) 

Surface-contact Safety Factor: 𝑁𝑓𝑐 =
𝑆𝑓𝑐

𝜎𝑐
   (8) 

As observed from the listed equations, for both bending and pitting, the objective is to minimize 

the stresses and maximize the strengths. 

Constant Parameters  

There are quantitative and qualitative parameters that will remain constant for each gear 

throughout the optimization. First, all gear teeth will have an involute form. This will ensure that 

center-distance errors in manufacturing and assembly will not affect the velocity ratio. The center-

distance between two gears, 𝐶, is qualified as the distance between both gear centers. Furthermore, 

the length of tooth was chosen to be full depth as it will allow more working depth for the gear 

contact. This is ideal because, for full-depth teeth, the bending geometry factor 𝐽 , is higher 

regardless of the pressure angle or the type of loading. As seen in the bending stress equation, there 

is an inverse proportionality between the bending stress and the bending geometry factor. 

Additionally, since cost is not an issue for this project, it was assumed that the gears could be 

precisely manufactured, i.e. manufacturing tolerances will be very small. Hence, the gears’ loads 

will be at the highest point of single-tooth contact (HPSTC). Furthermore, for the cases of full-

depth teeth with HPSTC loading,  𝐽 is higher at a pressure angle of 25 ̊ compared to 20 ̊. The 

pressure angle for each gear mesh contact was decided to be 25 ̊ to minimize bending stresses as 

much as possible. As for the quality index of the gears, 𝑄𝜈, the chosen value is 11. Since our design 

is for an aircraft engine drive, according to Table 12-6, quality index should be between 10 and 13 

[1].  Furthermore, it was initially estimated that the average pitch line velocity for the gears would 

be in between 2000 and 4000 feet per minute (fpm). A quality index of 11 was then chosen as it 

was the middle value in the suggested range of gear qualities of Table 12-7. Finally, a reliability 

of 99 % was chosen as it is considered adequate for aerospace applications.  
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Table 4: Constant Parameters for Gears. 

Parameter Value 

Length of teeth Full-Depth 

Location of Loading HPSTC 

Pressure Angle [degrees] 25 

Quality Index 11 

Reliability [%] 99 

 

Choice of Material 

As explained previously, the objective is to minimize weight while ensuring the gears will not fail 

in bending or pitting. Therefore, a material with low density and high surface-contact/bending 

fatigue strengths is required. A selection of materials was presented in the textbook with all the 

required properties to properly design the gears [1]. The lightest materials to be found were 

variations of steels, which had strong bending and surface-contact strengths, but not necessarily a 

low density. By conducting supplementary research outside of the textbook to find a lighter 

material with similar fatigue strengths, it was quickly realized that the relevant information to 

assess the validity of our design was most of the time not trustworthy. In other words, there was a 

lack of confidence in the validity of properties of various materials found outside of the textbook 

list. Obtaining a complete analysis of our gearbox with a high level of confidence in the properties 

of the chosen materials was prioritized. Hence, only materials from Table 12-20 and 12-21 were 

considered [1]. Since all steels had very similar densities, the chosen material for all gears was the 

highest grade of 2.5% Chrome, Nitrided Steel as it offered the highest bending and surface contact 

strengths. 

Table 5: Chosen Material Properties. 

Material Property Value 

Density [lb./in3] 0.2775 

Bending-Fatigue Strength [psi] 65,000 

Surface-Contact Strength [psi] 21,6000 

 

Bending Stress Factors 

The Bending Strength Geometry Factor, 𝑱, is a function of the number of pinion and gear teeth 

in a gear mesh. It will only be defined during the optimization process and updated constantly for 

each iteration. It will be determined using the tabulated values in Table 12-13, which is for full-

depth teeth under HPSTC loading at 25° pressure angle [1]. It varies between the pinion and the 

gear of a singular gear mesh. 

The Dynamic Factor, 𝑲𝝂, accounts for the pitch line velocity, 𝑉𝑡 , in fpm and is given by the 

following equation (9). 
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𝐾𝜈 = (
𝐴

𝐴 + √𝑉𝑡
)

𝐵

   (9) 

Where 𝐴 = 50 + 56(1 − 𝐵) and 𝐵 =
(12−𝑄𝜈)

2
3

4
 for 6 ≤ 𝑄𝜈 ≤ 11. Fortunately, our quality index 

value is 11, which makes this relationship valid. Similarly to the bending strength geometry factor, 

the value of the dynamic factor will constantly be updated as the number of teeth on the pinion 

and gear change. The pitch line velocity, 𝑉𝑡, is a function of the rotational speed of the gear, 𝜔, 

and its pitch diameter, 𝑑𝑝. Pitch diameter will vary depending on the chosen diametral pitch, 𝑝𝑑, 

i.e. the number of teeth per inch on a gear, and its total number of teeth, 𝑁. 

𝑉𝑡 =
𝑑𝑝

2
𝜔𝑝 =

𝑑𝑔

2
𝜔𝑔  (10)  

𝑑𝑝 =
𝑁𝑝

𝑝𝑑
;   𝑑𝑔 =

𝑁𝑔

𝑝𝑑
   (11) 

The Load Distribution Factor, 𝑲𝒎 , is a function of the face width, 𝐹 . Since this value is 

minimized as much as possible to have a low weight, it will initially be assumed to be lower than 

2 in. This assumption will be confirmed later. Hence, per Table 12-16, the value of 𝐾𝑚 will be set 

equal to 1.6 for each gear [1]. 

The Application Factor, 𝑲𝒂, varies depending on the stability of the driving machine. The motors 

driving the propeller are electric motors and loads are considered uniformly applied as it is an 

aircraft with a very niche application, meaning that the motors will be designed as to vibrate and 

impede as little as possible on the aircraft’s performance. Following these assumptions and Table 

12-17, the value of 𝐾𝑎 will be set equal and constant to 1 for each gear [1]. 

The Size Factor, 𝑲𝑺, is set to 1 since, for this case, there are no situations where the size of a 

certain geometrical parameter of the gears would affect the overall stress. 

The Rim Thickness Factor, 𝑲𝑩, accounts for situations where the rim depth is close to the tooth 

depth. This factor will be revised after the design of the shafts, as they will dictate what each gear 

bore diameter will have to be. In the case where the rim depth and tooth depth are similar, 𝐾𝐵 will 

be updated using the following equation (12) and will be applied to the concerned gear. 

𝐾𝐵 = −2(
𝑡𝑅
ℎ𝑡
) + 3.4   (12) 

Where 𝑡𝑅 is the rim depth and ℎ𝑡 is the tooth depth. For initial conditions, 𝐾𝐵 will be set to 1. 

The Idler Factor, 𝑲𝑰,  is set equal to 1 for all gears since there are no idler gears in the design. 

Surface-contact Stress Factors 

The factors 𝑪𝒂, 𝑪𝒎, 𝑪𝝂 and 𝑪𝒔 are respectively equal to 𝐾𝑎, 𝐾𝑚, 𝐾𝜈 and 𝐾𝑠.  
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The Surface Geometry Factor, 𝑰, factors in the radii of curvature, 𝜌𝑔 and 𝜌𝑝, and the pressure 

angle, 𝜙. It is identical for both the pinion and the gear. For an external gearset, it is given by the 

following equations (13) through (15). 

𝐼 =
𝑐𝑜𝑠𝜙

(
1
𝜌𝑔
+
1
𝜌𝑝
) 𝑑𝑝

    (13) 

𝜌𝑝 = √(𝑟𝑝 +
1 + 𝑥𝑝

𝑝𝑑
)
2

− (𝑟𝑝𝑐𝑜𝑠𝜙)
2
−
𝜋

𝑝𝑑
𝑐𝑜𝑠𝜙   (14) 

𝜌𝑔 = 𝐶𝑠𝑖𝑛𝜙 − 𝜌𝑔   (15) 

Where 𝑟𝑝 is the pinion pitch radius, 𝑥𝑝 is the pinion addendum coefficient, which is equal to 0 for 

full-depth teeth, 𝐶 is the center distance between the pinion and the gear. Since some of those 

values depend on the chosen diametral pitch and number of teeth, this factor will iteratively be 

updated. 

The Elastic Coefficient, 𝑪𝑷, accounts for differences in materials. Since all gears are made from 

the same type of steel, using Table 12-18, 𝐶𝑃 is constant and equal to 2300 for each gear [1]. 

The Surface Finish Factor, 𝑪𝑭, is constant and equal to 1 for each gear as there will be no rough 

surface finishes. As cost is not an issue, proper procedures will be followed to have an ideal surface 

finish on the gears. 

Corrected Fatigue Strengths 

For both bending and surface-contact strengths, a correcting factor is known as the life factor and 

accounts for the expected amount of load cycles of each gear. Before defining each fatigue-strength 

factor, load cycles for each gear need to be specified. The number of load cycles corresponds to 

the number of mesh contacts under load of a singular gear tooth. In general, one tooth will 

experience one load per rotation of the gear. Although, as seen on Figure 2, gears 1 and 6 have two 

contact meshes. Hence, for one full gear rotation, one tooth will experience two load cycles. 

Furthermore, the amount of load cycles will also depend on the rotational velocity of the gear. Our 

input specifies 2000 hours of operation, meaning that gear will rotate at 5500 rpm for 2000 hours. 

Therefore, gear 1 will complete 6.6 × 108  rotations, which will mean around 1.32 × 109  load 

cycles. The number of cycles for the other gears ends up being a function of the gear ratio between 

the other gears. Since they will be rotating at different speeds, they will not complete as many 

cycles. Although, gears 3 and 5 and 2 and 4 are on the same shaft and will therefore have the same 

rotational speed and the same amount of load cycles. The following table summarizes the load 

cycles for each gear. 

Table 6: Load Cycles for Each Gear. 

Gear Number Load Cycles, 𝑵𝑳 
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1 2(6.6 × 108) = 1.32 × 109 

2 
6.6×108

𝑚21
  

3 
6.6×108

𝑚31
  

4 
6.6×108

𝑚21𝑚42
  

5 
6.6×108

𝑚31𝑚53
  

6 
2(6.6×108)

𝑚65𝑚53𝑚31
 or 

2(6.6×108)

𝑚64𝑚42𝑚21
 

 

Bending-Fatigue Strength Factors 

As explained, the Life Factor, 𝑲𝑳, accounts for total load cycles of the gear, 𝑁𝐿. The equation 

used to calculate the factor is given below in equation (16). 

𝐾𝐿 = 1.3558 𝑁𝐿
−0.0178   (16) 

This was chosen as it is the upper limit of the range of life factors for loads beyond 107 load cycles 

shown in Figure 9. It will yield a higher bending fatigue-strength, which will allow the design to 

have a higher bending safety factor. Since most of the total load cycles for each gear is a function 

of their corresponding gear mesh ratio, this value will update as iterations to optimize the gearbox 

will be completed [1]. 

The Temperature Factor, 𝑲𝑻, accounts for the operating temperature of the gearbox. According 

to specifications, that temperature should not surpass 40 ̊ C. Therefore, 𝐾𝑇 is set to 1 and remains 

constant throughout iterations. 

The Reliability Factor, 𝑲𝑹, is given by Table 12-19, where for a reliability of 99% as precised in 

the gear assumptions, 𝐾𝑅 has a value of 1 and remains constant [1]. 

Surface-Contact Strength Factors 

𝑪𝑻 and 𝑪𝑹 are respectively the same as 𝐾𝑇 and 𝐾𝑅. 

The Life Factor, 𝑪𝑳,  is calculated in a similar manner as the life factor for bending. From Figure 

10, the upper limit of the range of life factors for loads beyond 107 load cycles is also taken. Hence, 

𝐶𝐿, is given by the following equation (17) [1]. 

𝐶𝐿 = 1.4488 𝑁
−0.023   (17) 

Again, this value will change as change gear dimensions are varied. 
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The Hardness Ratio Factor, 𝑪𝑯, considers the hardness ratio between the materials of the pinion 

and the gear. Although, for this design, all gears are of the same material. Therefore, this parameter 

is constant and equal to 1. 

Iterative Process 

For simplicity, gearset 1 designates gears 1, 2, and 3, and gearset 2 designates gears 4, 5, and 6. 

After defining all the stress and fatigue-strength factors, whether they were constant or varying, 

an iterative process was completed to optimize for the lowest gear weight possible. Initially, the 

face width of each gear was set to its maximal allowed value, which is, according to ASME 

standard, 16/𝑝𝑑. Furthermore, it is ideal to have the same face width, 𝐹, and diametral pitch, 𝑝𝑑, 

within a gear mesh, meaning the gears in gearset 1 will have the same face width and diametral 

pitch. Gearset 2 will also have the same relationship between its gears, although it is possible that 

face width and diametral pitch varies from gearset 1 to 2. Another consideration is that the distance 

between the center of gears 2 and 3 must be the same as the distance between the center gears 4 

and 5 to ensure that the gearbox remains symmetrical. 

The iterative process was done using the following method: all functions were coded into Excel, 

which took as inputs the number of teeth on each gear and their assigned diametral pitch. From 

those inputs, the output rotational velocity, safety factors for bending and surface-contact stresses, 

total length in the wind axis and center distances between gears 2-3 and gears 4-5 were 

automatically calculated. If the requirements in terms of output shaft rotational velocity, size and 

stress safety factors are satisfied, then the chosen geometrical parameters were deemed adequate. 

The last parameter that is updated constantly throughout this process that has not been mentioned 

yet is the tangential force applied on the gear teeth, 𝑊𝑡. It is given by the following equation (18). 

𝑊𝑡 =
𝑇𝑝

𝑟𝑝
=
𝑇𝑔

𝑟𝑔
   (18) 

Where 𝑇𝑝  is the torque applied on the pinion (𝑇𝑔  for gear). As seen in this relationship, the 

tangential force remains the same for the pinion and the gear of a gear mesh. Furthermore, the 

torque experienced by a gear will increase if the gear ratio is larger than 1. 

The torque at gear 1 is given by the following equation (19). 

𝑇1 =
𝑃𝑖𝑛𝑝𝑢𝑡

𝜔1
 (19) 

Since our gearbox requires a rotational speed reduction, gear ratios larger than 1 are expected for 

each gearset. Hence, the torque is expected to increase between gear 1 and gear 6.  

Table 7 summarizes how each geometrical and force parameter will vary for each gear depending 

on the chosen gear ratio.  
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Table 7: Rotational Velocity, Torque and Tangential Force for each Gear. 

Gear 

Number 
1 2 3 4 5 6 

𝝎 5500 
5500

𝑚21
 

5500

𝑚31
 𝜔2 𝜔3 

𝜔2
𝑚64

=
𝜔3
𝑚65

 

𝑻 𝑇1 𝑇1 ∗ 𝑚21 𝑇1 ∗ 𝑚31 𝑇2 𝑇3 𝑇2 ∗ 𝑚64 = 𝑇3 ∗ 𝑚65 

𝑾𝒕 
𝑇1
𝑟1

 
𝑇1 ∗ 𝑚21

𝑟2
 

𝑇1 ∗ 𝑚31

𝑟3
 

𝑇2
𝑟4

 
𝑇3
𝑟5

 
𝑇2 ∗ 𝑚64

𝑟6
=
𝑇3 ∗ 𝑚65

𝑟6
 

 

The first iteration that was done was for the case where the two gearsets had the same gear ratio. 

To find the individual gear ratio of each gearset, the square root of the overall gear ratio was taken. 

Using Excel, combinations of gear and pinion teeth numbers were found that matched this ratio. 

The next step was to choose a diametral pitch. A higher diametral pitch would lead to a smaller 

gear size and smaller face width. All gear and pinion teeth combinations were tested from the 

highest possible diametral pitch, i.e. from 18 to a value where the size requirements (17.7 in. in 

the wing axis) would no longer be met. Unfortunately, for all combinations of gear and pinion 

teeth, either some gears had safety factors below 1.5 in bending or pitting or were too big to fit in 

the size constraints. Hence, it was concluded that gearsets 1 and 2 needed different diametral 

pitches. 

The main issue arising from having different diametral pitches between gearset 1 and 2 is that the 

symmetry of the gearbox might not be respected. In other words, the center distances between 

gears 2-3 and gears 4-5 need to be equal. This was done by applying the following constraint on 

the number of teeth on gear 6.  

𝑑1 + 𝑑2 = 𝑑4 + 𝑑6   (20) 

(𝑁1 + 𝑁2)

𝑝𝑑1
=
(𝑁4 + 𝑁6)

𝑝𝑑2
   (21) 

𝑁6 =
𝑝𝑑2
𝑝𝑑1

(𝑁1 + 𝑁2) − 𝑁4    (22) 

The result is rounded to the closest integer. 𝑝𝑑1and 𝑝𝑑2 correspond to the pitch diameter of gearsets 

1 and 2 respectively. Since gearset 1 will have higher rotational speeds, it was assumed that it 

would have a higher diametral pitch. Furthermore, the torque is higher on gearset 2, it would then 

have a lower diametral pitch. This would lead to bigger teeth on the gear which would help sustain 

higher stresses. Although there is a tradeoff, since for a higher pitch diameter a higher number of 

teeth might be required to respect the required safety factor, which might make the gears too big. 
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The iteration process for this part went as follows: 

• Set pitch diameter of gear 1 to highest possible value, i.e. 18. 

• Adjust gear 1 teeth number to ensure that bending and surface-contact safety factors are 

satisfied. 

• Adjust gears 2-3 number of teeth to have a gear ratio, 𝑚21 and 𝑚31, close to 2.566 (value 

determined previously). Ensure that total length in wing axis is lower than 17.7 in. 

• Set pitch diameter of gears 4-5 to highest possible value, i.e. 18. 

• Adjust gears 4-5 number of teeth to ensure that overall gear ratio satisfies output rotational 

velocity. Verify if bending and surface-contact safety factors are satisfied. 

• Gear 6 number of teeth is automatically updated through constraint in equation (22). 

The following actions were taken depending on each case described: 

• If bending and surface-contact safety factors are not satisfied for gears 4-5, reduce 

diametral pitch to closest standard value from Table 12-2. 

• If, for any diametral pitch value for gears 4-5, output rotational velocity of gearbox is not 

adequate, increase number of teeth on gears 2-3 until maximum wing axis length is 

achieved. If output velocity is still not respected when that length is reached, reduce gear 

1 diametral pitch to next closest value in Table 12-2. 

• Repeat process until all requirements are satisfied. 

For each valid combination of diametral pitch and number of teeth, the face width was reduced as 

much as possible without compromising the safety factors to minimize mass. After iterating 

through that process, the lightest combination of diametral pitch and gear teeth that respected 

requirements was chosen. It is described in the results part of this report. The stress and strength 

factors used to calculate the safety factors for that chosen design are listed in Table 8 and Table 9 

below. 

Table 8: Bending and Surface-Contact Stress Factors. 

Gear Number 1 2 3 4 5 6 

Bending 

𝐽 0.47 0.512 0.512 0.4025 0.4025 0.4875 

𝐾𝜈 0.8765 0.8765 0.8765 0.9152 0.9152 0.9152 

𝐾𝑚 1.6 1.6 1.6 1.6 1.6 1.6 

𝐾𝑎 1 1 1 1 1 1 

𝐾𝑆 1 1 1 1 1 1 

𝐾𝐵 1 1 1 1.548 1.548 1 

𝐾𝐼 1 1 1 1 1 1 

Surface-Contact 

𝐶𝑎 1 1 1 1 1 1 

𝐶𝑚 1.6 1.6 1.6 1.6 1.6 1.6 

𝐶𝜈 0.8765 0.8765 0.8765 0.9152 0.9152 0.9152 
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𝐶𝑠 1 1 1 1 1 1 

𝐶𝑃 2300 2300 2300 2300 2300 2300 

𝐼 0.1365 0.1365 0.1365 0.1109 0.1109 0.1109 

𝐶𝐹 1 1 1 1 1 1 
 

Table 9: Fatigue-Strength Factors. 

Gear Number 1 2 3 4 5 6 

Bending 

𝐾𝐿 0.9329 0.9590 0.9590 0.9590 0.9590 0.9648 

𝐾𝑇 1 1 1 1 1 1 

𝐾𝑅 1 1 1 1 1 1 

Surface-Contact 

𝐶𝐿 0.8938 0.9262 0.9262 0.9262 0.9262 0.9334 

𝐶𝑇 1 1 1 1 1 1 

𝐶𝑅 1 1 1 1 1 1 

𝐶𝐻 1 1 1 1 1 1 

 

As explained previously, gears 4 and 5 have a similar rim depth compared to their tooth depth. 

Hence, the rim thickness factor was adjusted. 

A sample calculation for safety factor of gear 4 is provided in Annex C. 

2.2 Shafts 

2.2.1 Preliminary Design 

Before proceeding with a preliminary design of the shafts, some assumptions were made for the 

entirety of the shaft assembly. First, the material remained the same throughout the entirety of the 

design process. SAE 1020 Machined Steel of 𝑆𝑢𝑡 =  65 𝑘𝑝𝑠𝑖 and  𝑆𝑦 =  38 𝑘𝑝𝑠𝑖 [1] was used 

uniformly across the shafts, as it provides a relatively light metal with a reasonable strength, which 

makes it useful for simple shaft assemblies and general machinery. Furthermore, considering that 

the weight of the shaft is predicted to be significantly lower than that of the gear, the different 

materials were not explored to ensure a more efficient and concise design process. Second, a notch 

radius of 0.01 inch was assumed throughout all stress concentrations. From this assumption, notch 

sensitivity in bending and torsion could be calculated from the notch radius and the ultimate 

strength of the steel. Note that for torsion, a curve of 20 kpsi greater was used to calculate the notch 

sensitivity factor. From there, another assumption was made concerning the stress concentration 

factor. It was assumed to be 3.5 in bending, 2 in torsion, and 4 at the keys. These assumptions were 

made in agreement with Peterson’s Stress Concentration Factors, which display these values as 

approximate maxima for the expected loadings of the shafts assembly [2]. Hence, these factors 

will be used all throughout, yielding results with a factor of safety slightly higher than reality. All 

parameters related to stress concentrations can be found in Table 10 below. 



 

 

14 

Table 10: Design Parameters for Stress Concentrations. 

Parameter Name Parameter Symbol Value [unitless] 

Notch radius r 0.01 

Stress Concentration Factor in Bending 𝐾𝑡 3.5 

Stress Concentration Factor in Torsion 𝐾𝑡𝑠 2.0 

Stress Concentration Factor at Keyhole 𝐾𝑡,𝑘𝑒𝑦 4.0 

 

From these stress concentration factors, the fatigue factors were calculated in each case and were 

used throughout this section to calculate the diameters of the shafts. From the calculations, it was 

determined that in all cases, the fatigue concentration factors were equal to their mean counterpart. 

This was done by verifying that the maximum nominal stress did not increase past the ratio of 

yield strength over fatigue concentration factor. These values can hence be found in Table 11 

below.  

Table 11: Design Parameters for Fatigue Factors. 

Parameter Name 
Parameter 

Symbol 
Value [unitless] 

Notch Sensitivity in Bending 𝑞𝑏𝑒𝑛𝑑𝑖𝑛𝑔 0.5 

Notch Sensitivity in Torsion 𝑞𝑡𝑜𝑟𝑠𝑖𝑜𝑛 0.57 

 Fatigue Concentration Factor in Bending 𝐾𝑓 2.25 

Fatigue Concentration Factor in Torsion 𝐾𝑓𝑠 1.57 

Mean Fatigue Concentration Factor in Bending 𝐾𝑓𝑚 2.25 

Mean Fatigue Concentration Factor in Torsion 𝐾𝑓𝑠𝑚 1.57 

Fatigue Concentration Factor in Bending at Keyhole 𝐾𝑓,𝑘𝑒𝑦 2.5 

Fatigue Concentration Factor in Torsion at Keyhole 𝐾𝑓𝑠,𝑘𝑒𝑦 2.7 

Mean Fatigue Concentration Factor in Bending at Keyhole 𝐾𝑓𝑚,𝑘𝑒𝑦 2.5 

Mean Fatigue Concentration Factor in Torsion at Keyhole 𝐾𝑓𝑠𝑚,𝑘𝑒𝑦 2.7 

 

From the material selection, the required strengths could be obtained. As the endurance strength 

of the material is of interest for the design of the shaft, it was calculated using equation (23).𝑆𝑒 =

 𝐶𝑙𝑜𝑎𝑑𝐶𝑠𝑖𝑧𝑒𝐶𝑠𝑢𝑟𝑓𝐶𝑡𝑒𝑚𝑝𝐶𝑟𝑒𝑙𝑖𝑎𝑏𝑆𝑒
′𝑆𝑒 = 𝐶𝑙𝑜𝑎𝑑𝐶𝑠𝑖𝑧𝑒𝐶𝑠𝑢𝑟𝑓𝐶𝑡𝑒𝑚𝑝𝐶𝑟𝑒𝑙𝑖𝑎𝑏𝑆𝑒

′ 

𝑆𝑒 = 𝐶𝑙𝑜𝑎𝑑𝐶𝑠𝑖𝑧𝑒𝐶𝑠𝑢𝑟𝑓𝐶𝑡𝑒𝑚𝑝𝐶𝑟𝑒𝑙𝑖𝑎𝑏𝑆𝑒
′    (23) 

The uncorrected endurance strength, 𝑆𝑒
′, was calculated from the steel standards recommending a 

value of half the ultimate tensile strength for steels with an ultimate tensile strength superior to 

200 kpsi, as suggested in Figure 7.  The coefficients could then be obtained. See Table 12 for the 

coefficient values for the corrected endurance strength.  
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𝑪𝒍𝒐𝒂𝒅 is linked to the loading effects. In our case, almost exclusively bending and torsion are 

present. However, a thrust load is present on the output shaft. It was determined that the effects of 

the thrust force had negligible effect on the diameter calculations compared to the output torque, 

and hence it was not considered in the calculations of the load coefficient. Given that for both 

bending and torsion the respective load coefficients are equal to 1, it was set accordingly.  

𝑪𝒔𝒊𝒛𝒆 is liked to size effects. From Figure 8, the size coefficient is equal to 1 for diameters larger 

than 0.3 inch, which is expected in our case.  

𝑪𝒔𝒖𝒓𝒇  is liked to surface effects. Our shaft material is expected to be machined and will be 

calculated using the following equation (24). From Figure 8, the coefficients for machined material 

can be found. 

𝐶𝑠𝑢𝑟𝑓 = 𝐴(𝑆𝑢𝑡)
𝑏      (24) 

𝑪𝒕𝒆𝒎𝒑 is liked to temperature effects. It is assumed that the assembly is used at room temperature, 

and hence the coefficient is equal to 1.  

𝑪𝒓𝒆𝒍𝒊𝒂𝒃 is linked to the reliability of the material. We chose our material to have a reliability of 

99.9999%, hence the coefficient can be found to be 0.62 from Table 40. 

Table 12: Design Parameters for Endurance Strength. 

Parameter Name Parameter Symbol Value Units 

Uncorrected Endurance Strength 𝑆𝑒
′ 32500 psi 

Load Coefficient 𝐶𝑙𝑜𝑎𝑑 1 - 

Size Coefficient 𝐶𝑠𝑖𝑧𝑒 1 - 

Surface Coefficient 𝐶𝑠𝑢𝑟𝑓 0.84 - 

Temperature Coefficient 𝐶𝑡𝑒𝑚𝑝 1 - 

Reliability Coefficient 𝐶𝑟𝑒𝑙𝑖𝑎𝑏 0.62 - 

Endurance Strength 𝑆𝑒 16926 psi 

 

Before entering the design phase for each of the shafts, an overall dimensioning of the shaft 

assembly was made as a preliminary constraint. The maximum length was set to a maximum of 

30 cm, or 11.81 inches in our case. The overall goal was to not go over 11 inches and hence remain 

within the desired dimensions. The assumed dimensions in the following sections were hence 

decided from this constraint. 

It should be noted that the lengths of every shaft potion supporting the bearings were left as 

variables in the design process. This was done as these sections support only bearing reaction 

forces and will later be optimized to fit the final assembly. The exact dimensions will be found in 

Table 34 in the result section. 
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Note that the equations used in this sections come from Norton, Machine Design: An Integrated 

approach unless specified [1]. 

2.2.1.1 Input Shaft 

From the project definition, the preliminary parameters were defined. It was outlined that the input 

shaft would have a maximum RPM of 5500, along with a maximum horsepower of 60HP [3]. 

Throughout the design of this gearbox, it was assumed that maximum loading conditions were 

present. From these design parameters, the torque applied to the input shaft was calculated. For 

reference in the design process, a rough schematic of the input shaft is included in  Figure 3 below.  

 

 Figure 3: Input Shaft Schematic. 

 

From this initial idea of a design, bearing reaction forces along with moments induced by the gears 

could be calculated. To achieve this, dimensions needed to be set. From the length constraint set 

in the previous subsection, values of length were set to a = 2 in and b = 1 in. Hence, reaction forces 

and moments at various points can be found in Table 14 below. Note that points A, B, and C from  

Figure 3: Input Shaft Schematic. Figure 3 are used as references. Note also that bearings (B1 and 

B2) will be situated at points A and C, and a gear 1 will be situated at point B along with its 

respective key.  

Table 13: Dimensions for the Input Shaft. 

Dimension Value [in] 

a 2 

b 1 

 

From the load configuration, one may observe that no tangential or radial force is acting on the 

shaft because of the symmetric gears, which will result in no forces and/or moments being induced 

on the shafts caused by the gears. Hence, the preliminary design of the input shaft was initially 

solely dependent on the torque applied. However, upon consideration for the overall gear assembly 

weight, it was decided that the weight of the gears would be considered as an alternating load on 
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the shaft. Hence, alternating moments were calculated all throughout the shaft. Note that the 

reaction forces will be displayed in the sample calculation in the annex for clearer display of results. 

The relevant loading parameters for the design of the input shaft can be found in Table 14 below.  

Table 14: Loading Parameters for the Input Shaft. 

Parameter Name Parameter Symbol Value Units 

Mean Torque 𝑇𝑚 687.5493542 Lb-in 

Moment at point A 𝑀𝐴 0 Lb-in 

Moment at point B 𝑀𝐵 1.5762 Lb-in 

Moment at point C 𝑀𝐶 0 Lb-in 

 

Then, using the equation for diameter displayed below in equation (25), the preliminary shaft 

minimum diameters at different points of interest could be calculated. It should be noted that a 

factor of safety of 1.5 was used to obtain these results. The initial minimum diameters can be found 

in Table 15 below. Note that the equation used is equation 10.8 by Norton in Machine Design: An 

Integrated Approach [1]. It should also be noted that fatigue factors for keys were used for the 

calculations of 𝑑1, as a gear and key combination will be present at this location.  

𝑑 = {
32𝑁𝑓

𝜋
[
√(𝐾𝑓𝑀𝑎)

2
+
3

4
(𝐾𝑓𝑠𝑇𝑎)

2

𝑆𝑒
+
√(𝐾𝑓𝑚𝑀𝑚)

2
+
3

4
(𝐾𝑓𝑠𝑚𝑇𝑚)

2

𝑆𝑢𝑡
]}

1

3

   (25) 

Table 15: Initial Diameters Values for Input Shaft. 

Diameter Value [in] 

𝑑0 0.606360916 

𝑑1 0.725239877 

𝑑2 0.603444579 

 

2.2.1.2 Intermediate Shafts 

The intermediate shafts design process was slightly different, as tangential and radial forces from 

the gears were now considered. This hence meant that larger reaction forces and, inevitably, 

alternating moments would be present. As per the input shaft, the first step done was to calculate 

the torque acting on the shaft. Once again, this torque would be acting as a mean torque in our 

calculations. In this case, the power transmission through gears is done using the transmitted force. 

Hence, given that these forces are the ratio between the torque and gear radius, the transmitted 

torque could easily be calculated using the following equation (26). 

𝑇𝑔𝑒𝑎𝑟 =
𝑇𝑝𝑖𝑛𝑖𝑜𝑛∗𝑟𝑔𝑒𝑎𝑟

𝑟𝑝𝑖𝑛𝑖𝑜𝑛
     (26) 
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Next, the dimensioning of the shaft was decided. To optimize the design, they were based on the 

face width of the gears, and the a dimension was decided based to minimize the gap between B2 

and B6. See Figure 2 for reference. A schematic of one intermediate shaft can be seen in Figure 4 

below, along with Table 16 displaying the dimensions. 

 

Figure 4: Intermediate Shaft Schematic. 

 

Table 16: Dimensions for the Intermediate Shaft. 

Dimension Value [in] 

a 3 

b 0.75 

c 2 

Taking one singular shaft, one can observe that gear forces will be present at both point B and D, 

see Figure 4 above. Hence, this will induce reaction forces at point A and E, meaning at the 

bearing’s location. Note that the direction of the gear forces will be opposite for the two 

intermediary shafts but will be equal in scalar values as the gears are designed to be symmetrical. 

They will hence transmit equivalent radial (z-direction) and tangential (y-direction) forces. 

However, the tangential values will not be equal because of the gear weight configuration. Hence, 

the moments and forces will have to be calculated for both shafts to ensure a safe design. However, 

the final shafts will be designed to be identical and satisfy both load configurations. See Table 17 

below for the different load parameters. Once again, only the torque and moments will be displayed, 

and the relevant forces were calculated as displayed in sample calculations found in the annex. 

Note also that the total moments are the sum of moments in the y and z direction, given that gear 

forces have both a radial and tangential component and hence induce moments in both directions. 

Table 17: Loading Parameters for the Intermediate Shaft. 

Parameter Name Parameter Symbol Value [lb-in] 

Mean Torque 𝑇𝑚 1617.763186 

Total Moment at 

point A 
𝑀𝐴 0 
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Total Moment at 

point B 
𝑀𝐵 113.2760408 

Total Moment at 

point C (Max value) 
𝑀𝐶 1807.541477 

Total Moment at 

point D 
𝑀𝐷 1807.541477 

Total Moment at 

point E 
𝑀𝐸 0 

*Note that the value of moment at C is the maximum between values at B and D to consider the max loading in the section. 

Then, using equation (25) used in the input shaft, the minimum diameter of the shaft at the various 

locations were calculated. Once again, a factor of safety of 1.5 was used for the calculations. The 

initial minimum diameters can be found in Table 18 below. 

Table 18: Initial Diameters Values for Intermediate Shaft. 

Diameter Value [in] 

𝑑0 1.542656639 

𝑑11 1.046110219 

𝑑12 1.706352725 

𝑑2 0.802615878 

 

2.2.1.3 Output Shaft 

The design of the output shaft resembled the process of the input shaft, as it is between two 

identical pinions, transmitting equal and opposite forces to the gear. Hence, the shaft does not have 

any tangential transmitted load that induces a bending moment. However, the weight of the gear 

is considered and hence induces a moment. The gear present on the output shaft (G6) is the heaviest 

one in the gearset at 20.11 lbs and is the main reason why the effect of weight was considered. As 

per equation (26) used for the intermediate shafts, the transmitted torque was calculated. 

Furthermore, the dimensions of the output shaft were also determined. Note that the dimensions 

were determined based on the Figure 10-5 on page 601 of Norton [1]. The dimension𝑑3 was 

calculated apart of the design problem, but if can be changed depending on the fitting of the 

propeller. A schematic of the output shaft is seen in Figure 5 below, along with the dimensions of 

the shaft in Table 19. 
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Figure 5: Output Shaft Schematic. 

Table 19: Dimensions for the Output Shaft. 

Dimension Value [in] 

a 1.5 

b 2 

c 3.9370 

d 1 

 

In this configuration, the weight of the gear will have a downward force at B, while the weight of 

the propeller will create a downward force at D. These forces will hence induce bending moments 

throughout the shafts. Note that those forces, along with the reaction forces from the bearings will 

be displayed in the appendix.  

Unlike the other shafts of this gearbox, this output shaft is subjected to an axial force, which needs 

to be considered for the design of this shaft. However, this axial force does not induce any moment 

and hence equation (25) will not be used. The loading parameters can be seen in Table 20 below.  

Table 20: Loading Parameters for the Output Shaft. 

Parameter Name Parameter Symbol Value Units 

Mean Torque 𝑇𝑚 4529.736922 Lb-in 

Moment at point A 𝑀𝐴 0 Lb-in 

Moment at point B 𝑀𝐵 177.3165882 Lb-in 

Moment at point C  𝑀𝐶 868.3014219 Lb-in 

Moment at point D 𝑀𝐷 0 Lb-in 

Axial Thrust 𝑇𝑎𝑥𝑖𝑎𝑙 1000 Lb  

 

To calculate the diameter of the shaft, the basic equation of line CD of the Goodman diagram was 

used. For reference, see Figure 6 in the appendix below. 
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The equation (25) was derived from the intersection of line CD for a constant ratio of alternating 

and mean stresses. However, it was derived under the assumption that axial loads were 0 and only 

torsional and bending loadings were present. Upon derivations, equation (27) below was obtained.  

𝑁𝑓 = 

{
 
 

 
 
32𝐾𝑓𝑀𝑎

𝑆𝑒𝜋𝑑3
+

√(
4𝐾𝑓𝑚𝑇𝑎𝑥𝑖𝑎𝑙

𝜋𝑑2
)
2

+3(
16𝐾𝑓𝑠𝑚𝑇𝑚

𝜋𝑑3
)
2

𝑆𝑢𝑡

}
 
 

 
 
−1

(27) 

To find values for the shaft diameters, an iterative method using excel was conducted as the 

difference in power of the diameter values in the equation makes it hard to solve. This formula 

was then iterated with steady-increasing values of diameter until the output factor of safety reached 

a value of 1.5. This was done using the different values of alternating moments and fatigue 

concentration factors for each location of interest. The obtained values of diameters can be found 

in Table 21 below.  

Table 21: Initial Diameters Values for Output Shaft. 

Diameter Value [in] 

𝑑0 1.47590 

𝑑1 1.42474 

𝑑2 1.47585 

𝑑3 1.21871 

 

2.2.2 Corrected Design 

Upon the completion of the preliminary design, some changes were made. It was brought to our 

attention that the formulas used assumed a failure due to fatigue, and hence the factor of safety 

represented a fatigue factor of safety. However, it meant that the calculated diameters may have 

the required factor of safety in failure, but not in yielding. Hence, the obtained diameters were 

used to calculate the factors of safety, and needed changes were calculated. The diameters were 

put into the equation of line CD and DE, seen in equations (28) and (29) respectively. 

𝜎′𝑚
𝑆𝑢𝑡

+
𝜎′𝑎
𝑆𝑒

=
1

𝑁𝑓
    (28)  

𝜎′𝑚
𝑆𝑦

+
𝜎′𝑎
𝑆𝑦

=
1

𝑁𝑦
    (29) 

2.2.2.1 Input Shafts 

The initial diameters of the input shaft along with the calculated fatigue and yielding factors of 

safety can be found in Table 22 below. From equation (25), coming from (28) and (29), the 

following equations were derived.  
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𝑁𝑓 =
𝜋𝑑3

32

[
 
 
 √(𝐾𝑓𝑀𝑎)

2
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3
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3
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]
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  (30) 

𝑁𝑦 =
𝜋𝑑3

32
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2
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3
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    (31) 

Table 22: Initial Diameters of Input Shaft and Factors of Safety. 

Diameter Value [in] 𝑵𝒇 𝑵𝒚 

𝑑0 0.606360916 1.5 0.886336176 

𝑑1 0.725239877 1.5 0.883012937 

𝑑2 0.603444579 1.5 0.876923077 

 

From Table 22, all the shafts would yield before failing from fatigue. Hence, the initial diameters 

that were calculated did not meet the requirements for our gearbox. From there, new diameters 

were calculated from a refined formula of diameter seen in equation (32). Through these 

calculations, a yielding factor of safety of 1.5 was used. This equation is based on equation (28) 

and (29) above. The new diameters along with their factors of safety can be seen in Table 23 below.  

𝑑 =

{
 

 32𝑁𝑦

𝜋

[
 
 
 √(𝐾𝑓𝑀𝑎)

2
+
3
4 (𝐾𝑓𝑠𝑇𝑎)
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𝑆𝑦
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3
4 (𝐾𝑓𝑠𝑚𝑇𝑚)

2

𝑆𝑦
]
 
 
 

}
 

 

1
3

 (32) 

Table 23: Corrected Diameters of Input Shaft and Factors of Safety. 

Diameter Value [in] 𝑵𝒇 𝑵𝒚 

𝑑0 0.722595847 2.538540184 1.5 

𝑑1 0.865345899 3.402796457 1.5 

𝑑2 0.721684388 2.565789474 1.5 

 

With these corrected minimum values, final shaft values were determined. Given that the 

governing dimension is 𝑑2 since it needs to be the size of a bearing bore, it was determined first. 

It was scaled up to the closest bearing bore diameter. From this increase, the other dimensions 

were increased accordingly to maintain the proportions of the dimensions and to fit the initial 

design idea as seen in  Figure 3. The value of 𝑑0 was hence increased as to create a notch for better 

gear-shaft assembly. The final dimensions can be found in Table 24 below.  

Table 24: Final Diameters of Input Shaft and Factors of Safety. 
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Diameter Value [in] 𝑵𝒇 𝑵𝒚 

𝑑0 1 6.728180883 3.975620078 

𝑑1 0.9 2.866643986 1.687522483 

𝑑2 0.7974 3.461049275 2.023382653 

 

2.2.2.2 Intermediate Shafts 

The initial diameters of the intermediate shaft along with the calculated fatigue and yielding 

factors of safety can be found in Table 25 below. 

 

 

Table 25: Initial Diameters of Intermediate Shaft and Factors of Safety. 

Diameter Value [in] 𝑵𝒇 𝑵𝒚 

𝑑0 1.542656639 1.5 2.491004521 

𝑑11 1.046110219 1.5 1.036551228 

𝑑12 1.706352725 1.5 2.230123343 

𝑑2 0.802615878 1.5 0.876923077 

 

Hence, the values of 𝑑11 and 𝑑2 do not satisfy the minimum factor of safety of 1.5 in yielding. 

These values were recalculated using equation (32) above. The corrected minimum diameters can 

hence be found in Table 26 below.  

Table 26: Corrected Diameters of Intermediate Shaft and Factors of Safety. 

Diameter Value [in] 𝑵𝒇 𝑵𝒚 

𝑑0 1.542656639 1.5 2.491004521 

𝑑11 1.046110219 1.5 1.036551228 

𝑑12 1.706352725 1.5 2.230123343 

𝑑2 0.802615878 1.5 0.876923077 

 

In a similar manner as for the input shaft, new dimensioning was set based on the closest bearing 

bore diameter from 𝑑2 going up. The final values can be found in Table 27 below along with both 

factors of safety. 

Table 27: Final Diameters of Input Shaft and Factors of Safety. 

Diameter Value [in] 𝑵𝒇 𝑵𝒚 

𝑑0 1.8 2.096304622 3.481269528 

𝑑11 1.2 2.308087871 1.585494234 

𝑑12 1.71 1.509639182 2.247030921 
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𝑑2 0.984251969 2.766221132 1.617175431 

 

2.2.2.3 Output Shafts 

The initial diameters of the output shaft along with the calculated fatigue and yielding factors of 

safety can be found in Table 28 below. 

Table 28: Initial Diameters of Output Shaft and Factors of Safety. 

Diameter Value [in] 𝑵𝒇 𝑵𝒚 

𝑑0 1.21871 1.5 1.028232947 

𝑑1 1.42474 1.5 0.976896916 

𝑑2 1.47585 1.5 1.475719678 

𝑑3 1.13176 1.5 1.094737076 

 

It can be observed from Table 28 that all calculated diameters would fail in yielding before failing 

in fatigue. The iterative process was redone using equation (33) below. Note that equation is a 

combination of equation (27) and (29) above. 

𝑁𝑓 = 

{
 
 

 
 

32𝐾𝑓𝑀𝑎

𝑆𝑦𝜋𝑑3
+

√(
4𝐾𝑓𝑚𝑇𝑎𝑥𝑖𝑎𝑙

𝜋𝑑2
)
2

+ 3(
16𝐾𝑓𝑠𝑚𝑇𝑚
𝜋𝑑3

)
2

𝑆𝑦

}
 
 

 
 
−1

(33) 

The iterative process was done until both factors of safety were ensured to be larger than the 

required minimum of 1.5. The corrected diameters and their factors of safety can be seen in Table 

29 below. 

Table 29: Corrected Diameters of Output Shaft and Factors of Safety. 

Diameter Value [in] 𝑵𝒇 𝑵𝒚 

𝑑0 1.38238 2.188367228 1.5 

𝑑1 1.6439 2.303580794 1.5 

𝑑2 1.48391 1.524714676 1.5 

𝑑3 1.3538 2.565932146 1.5 

 

In a similar manner as for the input and intermediate shaft, new dimensioning was set based on the 

closest thrust bearing bore diameter from 𝑑2 going up. The final values can be found in Table 30 

below along with both factors of safety. Note that as per the input shaft, the value of 𝑑0 was 

increased as to create a notch for better gear-shaft assembly.  

Table 30: Final Diameters of Input Shaft and Factors of Safety. 
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Diameter Value [in] 𝑵𝒇 𝑵𝒚 

𝑑0 1.7 4.066597775 2.787034707 

𝑑1 1.65 2.329302164 1.516939676 

𝑑2 1.57480315 1.822166948 1.792473313 

𝑑3 1.36 2.601301992 1.520761165 

2.3 Bearings 

We design our bearings based on these three design criteria:  

• Load rating: we verify that the static load rating is higher than the static applied loads on 

the bearing.  

• Maximum operating speed: we verify that the bearing’s maximum expected rotational 

speed is less than the maximum designed rotational speed for the bearing 

• Number of loading cycles: we want to ensure that the 𝐿𝑃 (number of cycles that the bearing 

can withstand before 1% of the bearings fail, a failure rate that we defined which we’ll 

explain more in detail below) 

Since the gearbox plays a critical role in transmitting power from the motor to the propeller, we 

chose conservative design criteria in order to increase the reliability of the bearings. As a result, 

we introduced a safety factor of SF=1.5: this choice of value is a common safety factor in aerospace, 

allows for a reasonable amount of margin between our selected bearings’ properties and the 

anticipated loads and usage, and is small enough such that the safety factor doesn’t require the 

bearings to be overly large or heavy.  

Load Rating Criterion 

For the load rating design criteria, the following relation determines whether radial bearing’s load 

rating can handle load reactions 

𝐶0 > 𝑆𝐹 × 𝑃         (34) 

 where C0 is the static load rating for our bearing, SF=1.5 is the safety factor, and P is the magnitude 

of the applied loads on that bearing. For radial loading, following Norton’s example, we calculate 

the magnitude of applied loads P as 

𝑃 = √𝐹𝑦2 + 𝐹𝑧2          (35) 

In the case of combined axial and radial loading, we use the following relation to calculate P: 

𝑃 = 𝑋 ⋅ 𝑉 ⋅ 𝐹𝑟 + 𝑌 ⋅ 𝐹𝑎          (36) 

where V, X, Y are coefficients that we obtain from Fig. 11.24 from Norton based on the ratio of 

the axial load and the radial load, and the static load rating of the bearing. To keep this current 
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section concise, we included a detailed calculation in the appendix with a numerical example to 

determine the specific values for each variable.  

Maximum Operating Speed Criterion 

Given the maximum operating speed desired for each shaft and the bearing’s maximum operating 

speed, we use the following relation to determine whether a bearing satisfies the maximum 

operating speed criterion: 

𝜔max𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 >  𝑆𝐹 × 𝜔max𝑑𝑒𝑠𝑖𝑟𝑒𝑑               (37) 

where SF=1.5 is the safety factor.  

Load Cycles Criterion 

Given the equivalent applied load P and the bearing’s dynamic load rating C, we use the 

following relation to determine the number of maximum cycles that the bearing can withstand up 

to 10% of its components failing (the L10 number). Furthermore, because all of our bearings are 

roller bearings, we set the exponent term to 10/3: 

𝐿10 = (
𝐶

𝑃
)

10
3
         (38) 

Next, we add the reliability factor KR to calculate the number of cycles for a smaller failure rate. 

As we want to maximize bearing reliability, especially for the gearbox which plays a critical role 

in the airplane, we want a reliability of 99% and a failure rate of 1%. We apply this same 

reliability factor to all L10 calculations, which is KR=0.21 for a 1% failure rate as defined by 

Table 11-5 from Norton (included in the appendix): 

𝐿1 = 𝐾𝑅=0.99 × 𝐿10       (39) 

Finally, we want to verify that the resulting L1 value is greater than the maximum anticipated 

number of cycles, assuming a worst case scenario where the shaft continuously experiences the 

maximum rotational speed: 

𝐿1 > 𝑆𝐹 × 𝐿𝑚𝑎𝑥 𝑐𝑦𝑐𝑙𝑒𝑠         (40) 

where SF=1.5 is the safety factor and Lmax cycles is the max number of cycles that the shaft would 

experience at the highest possible rotational speed.  

Bearing Selection Process 

We also determined that the diameter of each shaft acts as a constraint for the bore diameter of 

each bearing. Accordingly, we determined that the bearing’s bore diameter must be larger than the 

minimum shaft diameter estimate, but ideally smaller than the adjacent shaft notch’s diameter. The 

bore diameter’s lower bound ensures that the shaft diameter is sufficiently large to withstand 

support reactions for its designed operating lifespan, while the bore diameter’s upper bound should 
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allow the bearing’s overall diameter to be smaller than its adjacent gears. While there are no hard 

upper bounds for the bore diameter since we could machine additional notches, we do not want 

the bore diameter to be too large. An oversized bore diameter means that the shaft diameter is 

overdesigned at that site, and the bearings would take up an exceedingly large amount of volume 

in the gearbox, making the design sub-optimal. Additionally, an oversized bore diameter would 

require machining additional notches on the shaft, which adds additional complexity for 

manufacturing the shaft and for analyzing stress concentrations.  

As a result, for each bearing under radial loading conditions, we started with the first bearing 

whose bore diameter was above the minimum shaft diameter. We quickly realized that the ball 

bearings provided in Norton wouldn’t necessarily last the number of load cycles given our design 

criteria and the applied loads on our shaft. As a result, we first turned to the NSK Ltd bearings 

catalogue, as these set of bearings had high load ratings and had a high variety of options that we 

could choose from. [4] However, we realized that the NSK catalogue did not offer an appropriate 

thrust bearing that was sufficiently small to match our desired bore diameter of 40mm that could 

support combined axial and radial applied loads. As a result, we decided to switch all our bearings 

to the SKF catalogue [5], as we found a tapered roller bearing thrust bearing that had our desired 

bore diameter of 40mm and still withstand our loading conditions. We made sure that the thrust 

bearing could support both radial and axial loads, as some thrust bearings only support axial 

loading. After we solved the thrust bearing design bottleneck, we were quickly able to find 

candidate bearings that only needed to support radial loading for all the remaining bearing sites.  

In an idealized setting, we would first start with the bearing with the smallest bore diameter, run 

the load cycle calculations based on the bearing’s load ratings, and iterate with progressively larger 

bearings until we satisfy all our design criteria. However, in our case, the choice of bore diameter 

would also affect the shaft design: since the shaft is arguably more critical (as there are more 

stringent design requirements for the shaft subject to our failure analyses), we would first 

determine the minimum shaft diameter, determine an ideal largest bore diameter based on the 

adjacent notch diameters on the shaft, and use these two values as minimum and maximum 

thresholds for our bore diameter. As a result, we would start with the smallest available bearing 

within this range, and progressively iterate with bearings with higher load ratings if needed. At 

bearing sites 1 and 2 where the applied loads are very small, the number of safe loading cycles 

would be several orders of magnitude larger than the target number of loading cycles. We decided 

to keep these bearings regardless of this apparent difference in magnitude since these were the 

smallest bearings available based on our design criteria, and the cost of these bearings is 

manageable given our project budget. In general, we decided to use roller bearings instead of ball 

bearings, because roller bearings can support higher rotational speeds and applied loading than 

equivalent ball bearings.   

In some cases that experienced high loading conditions, we added some extra margins on top of 

our safety margins: as we were continuously iterating our shaft and gear designs in parallel, we 

wanted to add some extra margins for the bearing requirements to ensure that changes in the shaft 
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design could fluctuate within a reasonable amount and still stay within all of our safety 

requirements for the bearing design criteria.  

2.4 Keys 

We needed keys in our design to transmit torque from the shafts to the gears as well as hold them 

in place. We used a parallel key design to assess the stresses in our gearbox to simplify our 

calculations, however, in practice we would use a tapered key to prevent axial slipping of our gears. 

The general dimensions of the tapered key will be the same as the parallel keys. The ASME 

standards define standard key sized for shaft diameters, shown in Table 10 from Norton. [1]  

Therefore, the only design variables were the material and the length of the key. We chose a low 

carbon ASE 1010 steel because it is weaker than the shafts and gears and we want the keys to fail 

before the more expensive parts. However, we still want to maintain our minimum safety factor of 

1.5 due to our high risk aerospace application and our large budget.  

Keys fail in two ways: bearing and shear. Shear failure is fatigue failure due to the shearing of the 

key between the gear and the shaft. To evaluate failure we must find the von mises stress. In our 

application we have constant torque with no alternating component so the safety factor can be 

calculated as follows: 

𝐹 =
𝑇𝑜𝑟𝑞𝑢𝑒

𝑟
, 𝜏 =

𝐹

𝑤𝑖𝑑𝑡ℎ∗𝑙𝑒𝑛𝑔𝑡ℎ
, 𝜎′ = √3𝜏, 𝑁𝑠ℎ𝑒𝑎𝑟 =

𝑠𝑢𝑡

𝜎′
  (41) 

Bearing failure is from the compressive stress due to the contact between the key and the shaft. 

Bearing stress is compressive therefore we consider it static. We can calculate the safety factors 

with the following equations: 

𝜎𝑏𝑒𝑎𝑟𝑖𝑛𝑔 =
𝐹𝑜𝑟𝑐𝑒

1

2
∗ℎ𝑒𝑖𝑔ℎ𝑡∗𝑙𝑒𝑛𝑔𝑡ℎ

, 𝑁𝑏𝑒𝑎𝑟𝑖𝑛𝑔 =
𝑠𝑦

𝜎𝑏𝑒𝑎𝑟𝑖𝑛𝑔
 (42) 

We designed the lengths to set the safety factor of all of our keys greater than 1.5 while 

constraining the keyway length to less than 1.5 times the diameter of the shaft to prevent excessive 

twisting and shaft deflection.  

3. Results 

3.1 Gears 

Below are listed the parameters and calculated safety factors of our final gear designs for each 

gear. The following tables include proof of requirement satisfaction as well as the weights of the 

gears. 

Table 31: Gear Geometrical Parameters and Safety Factors. 
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Gear 

Number 

Diametral 

pitch, 𝒑𝒅 

[tooth/in.] 

Number 

of teeth, 𝑵 

Face 

Width, 

𝑭 [in.] 

Bore 

Diameter

, 𝑫𝒃 [in.] 

Pitch 

Diameter, 

𝒅𝒑 [in.] 

Pitch 

Radius, 

𝒓𝒑  [in.] 

Bending 

Safety 

Factor, 

𝑵𝒇𝒃 

Pitting 

Safety 

Factor, 
𝑵𝒇𝒄 

1 12 34 0.75 0.9 2.83 1.415 2.19 1.52 

2 12 80 0.75 1.2 6.67 3.335 2.07 2.41 

3 12 80 0.75 1.2 6.67 3.335 2.07 2.41 

4 8 20 2 1.71 2.5 1.25 2.17 1.51 

5 8 20 2 1.71 2.5 1.25 2.17 1.51 

6 8 56 2 1.65 7 3.5 2.79 2.55 

 

 

Table 32: Proof of Requirement Satisfaction for Gears. 

Material High Grade, 2.5 % Chrome, Nitrided Steel 

Maximal Length in wing axis [in.] 16.337 

Length in vertical axis [in.] 7.25 

Output RPM 834.8 

Minimum Safety Factor for Bending Failure 2.07 

Minimum Safety Factor for Pitting Failure 1.51 

Pitch Diameter Within values for coarse gears 

Contact Ratio for Gearset 1 1.534 

Contact Ratio for Gearset 2 1.479 

Center distance between gears 2 and 3 [in.] 9.5 

Center distance between gears 4 and 5 [in.] 9.5 
 

Table 33: Gear Volume and Weights. 

Gear Number Volume [in.3] Weight [lbs.] 

1 4.26 1.182 

2 24.52 6.804 

3 24.52 6.804 

4 5.42 1.504 

5 5.42 1.504 

6 72.46 20.11 

Total 136.6 37.91 

 

3.2 Shafts 

Table 34: Shafts Diameter Final Values. 
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Location Diameter Value [in] 
Nom. Length 

[in] 
𝑵𝒇 𝑵𝒚 

Input shaft 

𝑑𝐵1 0.7974 1.00 3.461049275 2.023382653 

𝑑0.𝐼𝑛𝑝𝑢𝑡 1.0000 2.00 6.728180883 3.975620078 

𝑑𝐺1 0.9000 1.00 2.866643986 1.687522483 

𝑑𝐵2 0.7974 0.65 3.461049275 2.023382653 

Intermediate 

Shaft 

𝑑𝐵3−𝐵4 0.9842 1.00 2.766221132 1.617175431 

𝑑𝐺2−𝐺3 1.2000 0.75 2.308087871 1.585494234 

𝑑0.𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 1.8000 3.00 2.096304622 3.481269528 

𝑑𝐺4−𝐺5 1.7100 2.00 1.509639182 2.247030921 

𝑑𝐵5−𝐵7 0.9842 1.00 2.766221132 1.617175431 

Output Shaft 

𝑑𝐵6 1.5748 1.00 1.822166948 1.792473313 

𝑑𝐺6 1.6500 3.50 2.329302164 1.516939676 

𝑑0.𝑂𝑢𝑡𝑝𝑢𝑡 1.7000 1.00 4.066597775 2.787034707 

𝑑𝐵8 1.5748 3.94 1.822166948 1.792473313 

𝑑𝑝𝑟𝑜𝑝 1.3600 0.50 2.601301992 1.520761165 

 

3.3 Bearings  

Table 35: Bearing Names and General Specifications. Bearings from SKF [4] 

Bearing 

Number 

Bearing Name Bore 

Diameter 

[in] 

Bearing Type Weight 

(lbs.) 

B1 SKF N204 ECP 0.787 Single row cylindrical roller bearing 0.2381 

B2 SKF N204 ECP 0.787 Single row cylindrical roller bearing 0.2381 

B3 SKF NU1005 0.984 Single row cylindrical roller bearing 0.183 

B4 SKF NU1005 0.984 Single row cylindrical roller bearing 0.183 

B5 SKF NJ 2305 

ECML 

0.984 Single row cylindrical roller bearing 0.8598 

B6 SKF NU1008 

ML 

1.575 Single row cylindrical roller bearing 0.4894 

B7 SKF NJ 2305 

ECML 

0.984 Single row cylindrical roller bearing 0. 8598 

B8 SKF 33208 1.575 Single row tapered roller bearing 1.583 

Table 36: Desired Design Requirements and the Corresponding Bearing Properties. 

Desired Design Requirements and the Corresponding Bearing Properties 

Bearing 

Number of Cycles Applied Loading Rotational Speed 

Desired 

number of 

cycles 

Calculated 

L_1 P (lb) C_0 (lb) 

Desired 

RPM  

Max Rated 

RPM 

B1 6.60E+08 2.269E+18 0.788  4,946  5,500  19,000  

B2 6.60E+08 2.287E+19 0.394  4,946  5,500  19,000  
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B3 2.806E+08 9.960E+09 126.3  2,967  2,338  18,000  

B4 2.806E+08 1.224E+10 118.7  2,967  2,338  18,000  

B5 2.806E+08 3.292E+09 793.3  12,364  2,338  22,000  

B6 1.002E+08 3.275E+10 177.3  5,845  835  18,000  

B7 2.806E+08 3.343E+09 789.6  12,364  2,338  22,000  

B8 1.002E+08 1.245E+09 2,124.1  29,675  835  8,500  

 

3.4 Keys 

After performing the calculations in Section in 2.4, we determined the dimensions for our keyways 

and keys that satisfy our constraints. 

Table 37: Key Dimensions. 

Key # Dimensions (l x w x h) [in] 𝑵𝒃𝒆𝒂𝒓𝒊𝒏𝒈 𝑵𝒔𝒉𝒆𝒂𝒓 

1 0.5 0.25 0.25 
 

1.80 2.50 

2 0.75 0.25 0.25 
 

1.53 2.12 

3 0.75 0.25 0.25 
 

1.53 2.12 

4 0.5 0.375 0.375 
 

2.18 3.03 

5 0.5 0.375 0.375 
 

2.18 3.03 

6 1.25 0.375 0.375 
 

1.88 2.61 

3.5 Gearbox Dimensions and Weight 

Total Weight 47.38 lbs 

Gearbox Dimensions 16.7 x 11.2 x 7.25 [in] 

Final RPM 834.82 RPM 

Gear Ratio 6.5881 
 

The technical drawings of the gearbox assembly are located in the Appendix, Section 6.  

4. Conclusion 

Through an iterative design process, our group designed a gearbox that weights 47.38 lbs., has a 

dimension of 16.7 x 11.2 x 7.25 in., has a final output rotational speed of 834.82 RPM with a gear 

ratio of 6.5881, which is suitable to use as a gearbox for the Solar Impulse airplane’s electric 

population system. By assuming a continuous, worst-case max loading scenario, we tested all the 

components of our design accordingly for a total operating time of 2,000 hours subject to all 

relevant failure conditions and assumed a high degree of reliability. As a result, we were able to 

satisfy all design criteria (including the gearbox dimensions, operating life of 2,000 hours), 

matched the rotational output speed within 0.18 RPM of the target 835 RPM (which we judge to 

be sufficiently close), and minimized the weight to 47.38 lbs., making our gearbox a desirable 

proposed design for the Solar Impulse airplane. Eventually, other materials for the parts with high 

strength-to-weight ratio such as composites and other strong metals such as titanium could be 
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considered. Provided that the necessary properties are available in trustworthy literature, the 

weight could be minimized even more.  
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5. Annex 

 

Annex A: Figures. 

 

Figure 6: An "Augmented" Modified-Goodman Diagram for an Even Material (Norton, 2020). 

 

 

Figure 7: Uncorrected Endurance Limits for Various Materials [1]. 

 

 

Figure 8: Size Factors Calculations Guidelines [1]. 
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Figure 9:Bending Strength Life Factor, 𝐾𝐿[1]. 

 

Figure 10: Surface-Fatigue Strength Life Factor, 𝐶𝐿[1]. 
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ANNEX B: Tables 

 

Table 38:Nominal Key Widths for Various Shaft Diameters [1]. 

 

 

Table 39: Coefficients for Surface-Factor [1]. 

 

Table 40: Reliability Factors [1]. 
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Table 41: Reliability Factors for a Weibull Distribution. 
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Gear Tables 
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Annex C: Gear Sample Calculation 

As specified, a sample calculation for the safety factors of gear 4 is shown. 

Geometrical Parameters 

𝑑𝑖𝑎𝑚𝑒𝑡𝑟𝑎𝑙 𝑝𝑖𝑡𝑐ℎ, 𝑝𝑑 = 8 

𝑝𝑖𝑛𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ, 𝑁4 = 20 

𝑔𝑒𝑎𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ, 𝑁6 = 56 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑎𝑐𝑒 𝑤𝑖𝑑𝑡ℎ, 𝐹 =
16

𝑝𝑑
= 2 𝑖𝑛. 

𝑃𝑖𝑡𝑐ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝑑𝑝 =
𝑁4
𝑝𝑑
=
20

8
= 2.5 𝑖𝑛. 

𝑃𝑖𝑡𝑐ℎ 𝑟𝑎𝑑𝑖𝑢𝑠, 𝑟𝑝 =
𝑑𝑝

2
= 1.25 𝑖𝑛. 

𝐶𝑒𝑛𝑡𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑒𝑎𝑟𝑠 4 𝑎𝑛𝑑 6, 𝐶 = 4.75 𝑖𝑛. 

 

𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒, 𝑐 =
0.157

𝑝𝑑
 . This parameter is added for manufacturing purposes. 

𝐵𝑜𝑟𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝐷𝑏 = 1.71 𝑖𝑛. 

To determine tooth depth, the addendum and dedendum diameters are required. 

𝐴𝑑𝑑𝑒𝑛𝑑𝑢𝑚 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝐷𝑎 = 𝑑𝑝 +
2

𝑝𝑑
= 2.5 +

2

8
= 2.75 𝑖𝑛. 

𝐷𝑒𝑑𝑒𝑛𝑑𝑢𝑚 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝐷𝑑 = 𝑑𝑝 − 2(
1

𝑝𝑑
+ 𝑐) = 𝑑𝑝 − 2(

1

𝑝𝑑
+
0.157

𝑝𝑑
) = 2.5 − 2 (

1

8
+
0.157

𝑝𝑑
) 

𝐷𝑑 = 2.21 𝑖𝑛. 

𝑇𝑜𝑜𝑡ℎ 𝑑𝑒𝑝𝑡ℎ, ℎ𝑡 = (𝐷𝑎 − 𝐷𝑑)/2 = 0.27 𝑖𝑛. 

𝑅𝑖𝑚 𝑑𝑒𝑝𝑡ℎ, 𝑡𝑟 = (𝐷𝑑 − 𝐷𝑏)/2 = 0.25 𝑖𝑛. 

𝑎𝑑𝑑𝑒𝑛𝑑𝑢𝑚 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑥𝑝 = 0 
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Input Torque 

𝑇1 =
𝑃𝑖𝑛𝑝𝑢𝑡

𝜔1
=

(60ℎ𝑝 (6600

𝑖𝑛 − 𝑙𝑏
𝑠
ℎ𝑝

))

5500 𝑟𝑝𝑚 (
2𝜋
60)

𝑟𝑎𝑑
𝑠 /𝑟𝑝𝑚 

= 687.6 𝑙𝑏𝑠 

Rotational velocity of gear 4 

𝜔4 =
𝜔1

𝑚21𝑚42 
=
(5500 𝑟𝑝𝑚)

𝑁2
𝑁1
1

=
5500

80
34 

= 2337.5 𝑟𝑝𝑚 

Tangential velocity of gear 4 

𝑉𝑡 = 𝜔4𝑟𝑝 = (2337.5 𝑟𝑝𝑚)(1.25 𝑖𝑛. )(2𝜋)(1𝑓𝑡/12 𝑖𝑛. ) = 1529.9 𝑓𝑝𝑚 

Tangential force of gear 4 

𝑊𝑡4 =
𝑇4
𝑟4
=
𝑇2
𝑟2
=
𝑇1 ∗ 𝑚21

𝑟𝑝
=
687.6 (

80
34)

1.25
= 1296.4 𝑙𝑏𝑠 

 

Stress factors 

As explained previously, 𝐾𝑚, 𝐾𝑎, 𝐾𝑠, 𝐾𝐼 , 𝐶𝑚, 𝐶𝑎, 𝐶𝑠, 𝐶𝑝, 𝐶𝐹  were already determined using the 

assumptions described in section 2.1 of this report. 

• Bending Strength Factor, 𝐽 

𝐽 is determined by interpolating the values in table 12-13 for 𝑁𝑝 = 20 and 𝑁𝑔 = 54. 

𝐽 =  0.4025 

• Surface Geometry Factor, 𝐼 

𝜌𝑝 = √(𝑟𝑝 +
1 + 𝑥𝑝

𝑝𝑑
)
2

− (𝑟𝑝cos𝜙)
2
−
𝜋

𝑝𝑑
cos𝜙 

𝜌𝑝 = √(1.25 +
1 + 0

8
)
2

− (1.25 cos25)2 −
𝜋

8
cos25 = 0.423 

𝜌𝑔 = 𝐶𝑠𝑖𝑛𝜙 − 𝜌𝑔 

 

𝜌𝑔 = 4.75𝑠𝑖𝑛25 − 0.423 = 1.584 
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𝐼 =
𝑐𝑜𝑠25

(
1

1.584
+

1
0.423) 2.5

= 0.1109  

 

• Dynamic Factor, 𝐾𝜈, 𝐶𝜈 

Note 𝑄𝜈=11; 

𝐾𝜈 = 𝐶𝜈 = (
𝐴

𝐴 + √𝑉𝑡
)

𝐵

 

𝐵 =
(12 − 𝑄𝜈)

2
3

4
=
(12 − 11)

2
3

4
= 0.25 

𝐴 = 50 + 56(1 − 𝐵) = 50 + 56(1 − 0.25) = 92 

𝐾𝜈 = 𝐶𝜈 = (
𝐴

𝐴 + √𝑉𝑡
)

𝐵

= (
92

92 + √1529.9 𝑓𝑝𝑚
)

0.25

= 0.9152 

 

• Rim-Thickness Factor, 𝐾𝐵 

𝐾𝐵 = −2(
𝑡𝑅
ℎ𝑡
) + 3.4 = −2(

0.25 𝑖𝑛.

0.27 𝑖𝑛.
) + 3.4 = 1.548 

 

Bending and Surface-Contact Stresses 

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠, 𝜎𝑏 =
𝑊𝑡𝑝𝑑𝐾𝑎𝐾𝑚𝐾𝑠𝐾𝐵𝐾𝐼

𝐹𝐽𝐾𝜈
 

𝜎𝑏 =
(1296.4)(8)(1)(1.6)(1)(1.548)(1)

(2)(0.4025)(0.9152)
= 34,976.84 𝑝𝑠𝑖   

 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑟𝑒𝑠𝑠, 𝜎𝑐 = 𝐶𝑝√
𝑊𝑡𝐶𝑎𝐶𝑚𝐶𝑠𝐶𝑓

𝐹𝐼𝑑𝐶𝜈
 

𝜎𝑐 = (2300)√
(1296.4)(1)(1.6)(1)(1)

(2)(0.1109)(2.5)(0.9152)
= 147,026.091 𝑝𝑠𝑖. 
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Strength factors 

As explained previously, 𝐾𝑇 , 𝐾𝑅 , , 𝐶𝑇 , 𝐶𝑅 , 𝐶𝐻  were already determined using the assumptions 

described in section 2.1 of this report. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑎𝑑 𝑐𝑦𝑐𝑙𝑒𝑠 𝑓𝑜𝑟 𝑔𝑒𝑎𝑟 4, 𝑁𝐿4 =
6.6 × 108

𝑚21𝑚42
=
6.6 × 108

(
80
34) (1)

= 2.81 × 108 

 

𝐾𝐿 = 1.3558 𝑁𝐿
−0.0178 = 1.3558 (2.81 × 108)−0.0178 = 0.9590 

 

𝐶𝐿 = 1.4488 𝑁𝐿
−0.023 = 1.4488 (2.81 × 108)−0.023 = 0.9262 

Corrected Bending and Surface-contact fatigue strengths 

𝑆𝑓𝑏 =
𝐾𝐿
𝐾𝑇𝐾𝑅

𝑆𝑓𝑏′ =
0.9590

(1)(1)
(65000) = 62,335.54 𝑝𝑠𝑖 

𝑆𝑓𝑐 =
𝐶𝐿𝐶𝐻
𝐶𝑇𝐶𝑅

𝑆𝑓𝑐′ =
(0.9262)(1)

(1)(1)
(216000) = 200,059.76 𝑝𝑠𝑖 

Bending and surface-contact safety factors for gear 4 

𝑁𝑓𝑏 =
𝑆𝑓𝑏

𝜎𝑏
=
62,335.54

18,595.32
= 1.79  

𝑁𝑓𝑐 =
𝑆𝑓𝑐

𝜎𝑐
=
200,059.76

147,026.091
= 1.51 
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Annex D: Shafts Calculations 

Preliminary Calculations 

As a reference, the design process for the output and input shafts will be displayed.  

First, the preliminary parameters were calculated. From the values of stress concentration factors, 

the fatigue concentration factors could be calculated using the notch sensitivity. Note the sample 

calculation using the value in bending. The same process was done for all different factors. 

𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1) 

𝐾𝑓 = 1 + 0.50(3.5 − 1) 

𝐾𝑓 = 2.25 

Next, the selected material of machined AISI 1020 Steel was used to calculate the endurance 

strength. From Figure 7, it can be found that the uncorrected endurance strength for steels is half 

the ultimate strength, considering that this material’s ultimate tensile strength is below 200 kpsi.  

𝑆𝑒
′ = 0.5𝑆𝑢𝑡 

𝑆𝑒
′ = 0.5 ∗ 65 000 = 32 500 𝑝𝑠𝑖 

 

To calculate the corrected endurance limit, equation (A) in the Theoretical Development section 

is used. The adequate coefficients were also chosen based on the corresponding factors.  

𝑆𝑒 = 𝐶𝑙𝑜𝑎𝑑𝐶𝑠𝑖𝑧𝑒𝐶𝑠𝑢𝑟𝑓𝐶𝑡𝑒𝑚𝑝𝐶𝑟𝑒𝑙𝑖𝑎𝑏𝑆𝑒
′     

𝐶𝑠𝑢𝑟𝑓 = 𝐴(𝑆𝑢𝑡)
𝑏 

𝐶𝑠𝑢𝑟𝑓 = 4.51(65000)
−0.265 

𝐶𝑠𝑢𝑟𝑓 = 0.84 

 

The corrected endurance limit can be calculated. 

𝑆𝑒 = (1)(1)(0.84)(1)(0.62)(32500) = 16926 𝑝𝑠𝑖  

To justify the affirmation that 𝐾𝑓 = 𝐾𝑓𝑚, the maximum nominal stress will be compared to the 

ratio of yield stress over the fatigue concentration factor. The maximum nominal stress will be 

calculated for maximum loading of the input shaft, i.e. 𝑑0 and will be compared with the bending 

fatigue concentration factor. 
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𝜎𝑚𝑎𝑥,𝑛𝑜𝑚 = √(2.25 ∗ 1.5762)2 +
3

4
(1.57 ∗ 0)2 +√(2.25 ∗ 0)2 +

3

4
(1.57 ∗ 687.55)2 

𝜎𝑚𝑎𝑥,𝑛𝑜𝑚 = 938.31 𝑝𝑠𝑖 

𝑆𝑦

𝐾𝑓
=
38000

2.25
= 16889 𝑝𝑠𝑖 > 𝜎𝑚𝑎𝑥,𝑛𝑜𝑚 = 938.31 𝑝𝑠𝑖 

Hence, the assumption is valid. 

 

Input Shaft 

Torque calculations: 

𝑇 =
𝑃

𝜔
=
(60)(6600)

(5500) (
2𝜋
60)

= 687.55 𝑙𝑏 ∗ 𝑖𝑛 

 

Moments and forces calculations: 

∑𝑀𝐴 = −𝑊𝐺1 ∗ 𝑎 + 𝐹𝐵1 ∗ (𝑎 + 𝑏) = 0 

𝐹𝐵1 = 
𝑊𝐺1(𝑎)

(𝑎 + 𝑏)
=
(1.18215)(2)

(2 + 1)
= 0.7881 𝑙𝑏 

Note that 𝑊𝐺1 refers to the weight of the gears and 𝐹𝐵1 to the reaction force of B1. 

 

∑𝐹𝑦 = −𝑊𝐺1 + 𝐹𝐵1 + 𝐹𝐵2 = 0 

𝐹𝐵2 = 𝑊𝐺1 − 𝐹𝐵1 = 1.18215 − 0.7881 = 0.39405 

 

𝑀𝐵1 = 0 (𝑓𝑟𝑜𝑚 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦) 

𝑀𝐺1 = 𝐹𝐵1 ∗ 𝑎 = (0.7881)(2) = 1.5762 𝑙𝑏 ∗ 𝑖𝑛  

𝑀𝐵2 = 𝐹𝐵1 ∗ 𝑎 − (𝑊𝐺1 + 𝐹𝐵2) ∗ (𝑏) = (0.7881)(2) − (1.18215 + 0.39405) ∗ (1) 

𝑀𝐵2 = 0 𝑙𝑏 ∗ 𝑖𝑛  
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Diameters Calculations 

Calculating the diameters using equation (B), based on fatigue failure,  

𝑑0 =

{
 

 
32(1.5)

𝜋

[
 
 
 √(2.25 ∗ 1.5762)2 +

3
4
(1.57 ∗ 0)2

16926
+
√(2.25 ∗ 0)2 +

3
4
(1.57 ∗ 687.55)2

65000

]
 
 
 

}
 

 

1
3

 

𝑑0 = 0.6063609 𝑖𝑛 

𝑑1 =

{
 

 
32(1.5)

𝜋

[
 
 
 √(2.5 ∗ 1.5762)2 +

3
4
(2.7 ∗ 0)2

16926
+

√(2.5 ∗ 0)2 +
3
4
(2.7 ∗ 687.55)2

65000

]
 
 
 

}
 

 

1
3

 

𝑑1 = 0.7252399 𝑖𝑛 

𝑑2 =

{
 

 
32(1.5)

𝜋

[
 
 
 √(2.25 ∗ 0)2 +

3
4
(1.57 ∗ 0)2

16926
+
√(2.25 ∗ 0)2 +

3
4
(1.57 ∗ 687.55)2

65000

]
 
 
 

}
 

 

1
3

 

𝑑2 = 0.6034446 𝑖𝑛 

 

Now calculating the diameters using equation (H), based on yielding failure,  

𝑑0 =

{
 

 
32(1.5)

𝜋

[
 
 
 √(2.25 ∗ 1.5762)2 +

3
4
(1.57 ∗ 0)2

38000
+
√(2.25 ∗ 0)2 +

3
4
(1.57 ∗ 687.55)2

38000

]
 
 
 

}
 

 

1
3

 

𝑑0 = 0.7225958 𝑖𝑛 

𝑑1 =

{
 

 
32(1.5)

𝜋

[
 
 
 √(2.5 ∗ 1.5762)2 +

3
4
(2.7 ∗ 0)2

38000
+
√(2.5 ∗ 0)2 +

3
4
(2.7 ∗ 687.55)2

38000

]
 
 
 

}
 

 

1
3

 

𝑑1 = 0.8563459 𝑖𝑛 
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𝑑2 =

{
 

 
32(1.5)

𝜋

[
 
 
 √(2.25 ∗ 0)2 +

3
4
(1.57 ∗ 0)2

38000
+
√(2.25 ∗ 0)2 +

3
4
(1.57 ∗ 687.55)2

38000

]
 
 
 

}
 

 

1
3

 

𝑑2 = 0.7216844 𝑖𝑛 

Safety factors calculations: 

The final factor of safety values was hence calculated using equations (FF) and (GG). Below is a 

sample calculation for the diameter 𝑑0. 

 

𝑁𝑓 =
𝜋𝑑3

32

[
 
 
 √(𝐾𝑓𝑀𝑎)

2
+
3
4 (𝐾𝑓𝑠𝑇𝑎)

2

𝑆𝑒
+
√(𝐾𝑓𝑚𝑀𝑚)

2
+
3
4 (𝐾𝑓𝑠𝑚𝑇𝑚)

2

𝑆𝑢𝑡
]
 
 
 
−1

 

𝑁𝑓 =
𝜋13

32

[
 
 
 √(2.25 ∗ 1.5762)2 +

3
4
(1.57 ∗ 0)2

16926
+
√(2.25 ∗ 0)2 +

3
4
(1.57 ∗ 687.55)2

65000

]
 
 
 
−1

 

𝑁𝑓 = 6.728180883 

 

𝑁𝑦 =
𝜋𝑑3

32

[
 
 
 √(𝐾𝑓𝑀𝑎)

2
+
3
4 (𝐾𝑓𝑠𝑇𝑎)

2

𝑆𝑦
+
√(𝐾𝑓𝑚𝑀𝑚)

2
+
3
4 (𝐾𝑓𝑠𝑚𝑇𝑚)

2

𝑆𝑦
]
 
 
 
−1

 

𝑁𝑦 =
𝜋13

32

[
 
 
 √(2.25 ∗ 1.5762)2 +

3
4
(1.57 ∗ 0)2

38000
+
√(2.25 ∗ 0)2 +

3
4
(1.57 ∗ 687.55)2

38000

]
 
 
 
−1

 

𝑁𝑦 = 3.975620078 

 

Output Shaft 

Diameters calculations: 

The same process as outlined in the input shaft calculations can be applied to calculate the moments 

for the output shaft. However, the diameters were calculated iteratively using an excel spreadsheet. 
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The diameters based on the fatigue factors of safety were calculated using equation (D) above. 

Diameters were selected when the factor of safety approached the desired value of 1.5. 

 

1.5 =  

{
 
 

 
 

32 ∗ 2.25 ∗ 177.3165882

16926 ∗ 𝜋𝑑0
3 +

√(
4 ∗ 2.25 ∗ 1000

𝜋𝑑0
2 )

2

+ 3(
16 ∗ 1.57 ∗ 4537.3398

𝜋𝑑0
3 )

2

65000

}
 
 

 
 
−1

 

𝑑0 = 1.47590 𝑖𝑛 

1.5 =  

{
 
 

 
 

32 ∗ 2.5 ∗ 177.3165882

16926 ∗ 𝜋𝑑1
3 +

√(
4 ∗ 2.5 ∗ 1000

𝜋𝑑1
2 )

2

+ 3(
16 ∗ 2.7 ∗ 4537.3398

𝜋𝑑1
3 )

2

65000

}
 
 

 
 
−1

 

𝑑1 = 1.42474 𝑖𝑛 

1.5 =  

{
 
 

 
 

32 ∗ 2.25 ∗ 868.3014219

16926 ∗ 𝜋𝑑2
3 +

√(
4 ∗ 2.25 ∗ 1000

𝜋𝑑2
2 )

2

+ 3(
16 ∗ 1.57 ∗ 4537.3398

𝜋𝑑2
3 )

2

65000

}
 
 

 
 
−1

 

𝑑2 = 1.47585 𝑖𝑛 

1.5 =  

{
 
 

 
 

32 ∗ 2.25 ∗ 0

16926 ∗ 𝜋𝑑3
3 +

√(
4 ∗ 2.25 ∗ 1000

𝜋𝑑3
2 )

2

+ 3(
16 ∗ 1.57 ∗ 4537.3398

𝜋𝑑3
3 )

2

65000

}
 
 

 
 
−1

 

𝑑3 = 1.21871 𝑖𝑛 

 

Finally, the corrected diameters were calculated using equation (30) above.  
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1.5 =  

{
 
 

 
 

32 ∗ 2.25 ∗ 177.3165882

38000 ∗ 𝜋𝑑0
3 +

√(
4 ∗ 2.25 ∗ 1000

𝜋𝑑0
2 )

2

+ 3(
16 ∗ 1.57 ∗ 4537.3398

𝜋𝑑0
3 )

2

38000

}
 
 

 
 
−1

 

𝑑0 = 1.38238 𝑖𝑛 

 

1.5 =  

{
 
 

 
 

32 ∗ 2.5 ∗ 177.3165882

38000 ∗ 𝜋𝑑1
3 +

√(
4 ∗ 2.5 ∗ 1000

𝜋𝑑1
2 )

2

+ 3(
16 ∗ 2.7 ∗ 4537.3398

𝜋𝑑1
3 )

2

38000

}
 
 

 
 
−1

 

𝑑1 = 1.64390 𝑖𝑛 

 

1.5 =  

{
 
 

 
 

32 ∗ 2.25 ∗ 868.3014219

38000 ∗ 𝜋𝑑2
3 +

√(
4 ∗ 2.25 ∗ 1000

𝜋𝑑2
2 )

2

+ 3(
16 ∗ 1.57 ∗ 4537.3398

𝜋𝑑2
3 )

2

38000

}
 
 

 
 
−1

 

𝑑2 = 1.48391 𝑖𝑛 

 

1.5 =  

{
 
 

 
 

32 ∗ 2.25 ∗ 0

38000 ∗ 𝜋𝑑3
3 +

√(
4 ∗ 2.25 ∗ 1000

𝜋𝑑3
2 )

2

+ 3(
16 ∗ 1.57 ∗ 4537.3398

𝜋𝑑3
3 )

2

38000

}
 
 

 
 
−1

 

𝑑3 = 1.35380 𝑖𝑛 

 

The factors of safety for the final diameters can be calculated in the same fashion as in the 

sample calculations for the input shaft. 
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Annex E: Bearing Calculations 

Sample Calculation for Combined Radial and Thrust Loading for Bearing 8 

We run calculations for an SKF 33208 single row tapered roller bearing, at a location that 

experiences both axial and radial loading.  

First, we want to verify that the bearing’s rated operating speed is greater than the maximum 

anticipated operating speed, with a safety factor of SF=1.5: 

𝜔𝑟𝑎𝑡𝑒𝑑 > 𝑆𝐹 × 𝜔max𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑 

8,500 𝑟𝑝𝑚 > 1.5 × 835 𝑟𝑝𝑚  

8500 𝑟𝑝𝑚 >  1,252.5 𝑟𝑝𝑚✓ 

Second, we want to verify that the bearing’s load ratings are greater than the applied loads on the 

bearing with a safety factor of SF=1.5: 

𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐹𝑎 + 𝐹𝑟 = 417.97 𝑙𝑏 + 1,000 𝑙𝑏 = 1,417.97 𝑙𝑏 

𝐶0 = 29,675 𝑙𝑏 > 𝑆𝐹 × 𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 1.5 × 1,417.9 𝑙𝑏 = 2,126.85 𝑙𝑏 

29,675 𝑙𝑏 >  2,126.85 𝑙𝑏✓ 

Next, we want to verify that the bearing’s estimated number of cycles is larger than the 

anticipated number of cycles that the bearing will experience while in operation: 

𝐹𝑎
𝐶0
=
1000 𝑙𝑏

29675 𝑙𝑏
= 3.37 × 10−2 

From Fig. 11-24 from Norton, we get 𝑒 = 0.22 +
0.0337−0.022

0.056−0.022
× (0.26 − 0.22) = 0.234 

𝐹𝑎
𝑉 ⋅ 𝐹𝑟

=
1000 𝑙𝑏

1 ⋅ 417.97 𝑙𝑏
= 2.39 

Where we set V=1, as the inner ring of the bearing rotates in our setup.  

We observe that 
𝐹𝑎

𝑉⋅𝐹𝑟
= 2.34 >  𝑒 = 3.37 × 10−2. From Fig. 11-24 from Norton, we determine 

that: 

X=0.56 

𝑌 = 1.99 +
0.0337 − 0.022

0.056 − 0.022
× (1.71 − 1.99) =  1.89 

Y=1.89 

We then calculate the equivalent load: 
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𝑃 = 𝑋 ⋅ 𝑉 ⋅ 𝐹𝑟 + 𝑌 ⋅ 𝐹𝑎 

𝑃 = 0.56 × 1 × 417.97 𝑙𝑏 +  1.89 × 1000 𝑙𝑏 =  2,124.1 𝑙𝑏  

Given this equivalent load, we want to check that the static load rating of the bearing can withstand 

the equivalent load with a safety factor of SF=1.5: 

𝐶0 > 𝑃 × 𝑆𝐹 

29,675 𝑙𝑏 > 2,124.1 𝑙𝑏 × 1.5 

29,675 𝑙𝑏 > 3,186.5 𝑙𝑏 

For an additional sanity check, we also observe that Fr = 417.97 lb and Fa = 1,000 lb. Even if we 

were to take the magnitude of the resulting force vector from the sum of these two components, 

we would still satisfy the static load rating. Once again, the main calculation is the one above (to 

check that C0 > P x SF), though we want to do this following calculation as a sanity check: 

𝐶0 >  𝑆𝐹 × √𝐹𝑎2 + 𝐹𝑟2 

29,675 𝑙𝑏 > 1.5 × √(1,000𝑙𝑏)2 + (417.97 𝑙𝑏)2 

29,675 𝑙𝑏 >  1,500.3 𝑙𝑏 

 

Moving back to load cycle calculations, we then calculate the number of cycles at a L-10 lifecycle. 

Since we are using a roller bearing, we use an exponent of 10/3: 

𝐿10 = (
𝐶

𝑃
)

10
3
= (

28,776 𝑙𝑏

2,124.1 𝑙𝑏
)

10
3
= 5.93 × 103 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑟𝑒𝑣 = 5.93 × 109 𝑟𝑒𝑣 

Next, we calculate the L-1 lifecycle, as we choose a 1% roller failure rate as our design criteria 

from Table 11-5 from Norton:  

𝐿1 = 𝐾𝑅=0.99 ⋅ 𝐿10 = 0.21 × 5.93 × 109 = 1.24 × 109 𝑟𝑒𝑣 

We calculate the number of anticipated of loading cycles that the bearing needs to survive, 

assuming that the bearing withstands maximum loading throughout the entire flight time: 

𝑁𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑 = 835 𝑟𝑝𝑚 × 60
𝑚𝑖𝑛

ℎ𝑟
× 2000 ℎ𝑟𝑠 = 1.002 × 108 𝑐𝑦𝑐𝑙𝑒𝑠  

We then check whether this bearing can withstand the number of anticipated load cycles. We use 

a safety factor of SF=1.5: 

𝑆𝐹 × 𝑁𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑 < 𝐿1 

1.5 × 1.002 × 108 𝑟𝑒𝑣 < 1.24 × 109 𝑟𝑒𝑣 
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1.503 × 108𝑟𝑒𝑣 < 1.24 × 109 𝑟𝑒𝑣✓ 

In summary, we were able to verify all three design criteria with a safety factor of SF=1.5: 

1. The bearing’s certified rotational speed is greater than the rotational speed of its gearbox 

shaft.  

2. The bearing’s static load ratings are greater than the anticipated applied loads. 

3. The bearing calculated lifetime with a reliability of R=0.99 (1% bearing roller failure) is 

greater than the anticipated number of cycles.  

□ 

Sample Calculation for Radial Loading for Bearing 7 

We run calculations for bearing 7, which experiences radial loading. We are using the SKF NJ 

2305 ECML bearing.  

First, we want to verify that the bearing’s rated operating speed is greater than the maximum 

anticipated operating speed, with a safety factor of SF=1.5: 

𝜔𝑟𝑎𝑡𝑒𝑑 > 𝑆𝐹 × 𝜔𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 × 𝑔𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 

12,000 𝑟𝑝𝑚 > 1.5 × 835 𝑟𝑝𝑚 × 2.8 

12,000 𝑟𝑝𝑚 >  3,507 𝑟𝑝𝑚 ✓ 

Second, we want to verify that the bearing’s load ratings are greater than the applied loads on the 

bearing with a safety factor of SF=1.5. Based on the textbook example from Norton, we calculate 

the magnitude of the sum of the y- and z-direction reaction loads: 

𝑃 = √𝐹𝑦2 + 𝐹𝑧2 = √(−780.22𝑙𝑏)2 + (121.35𝑙𝑏)2 = 789.6 𝑙𝑏 

We then compare the resulting applied load with the bearing’s load ratings: 

𝐶0 > 𝑆𝐹 × 𝑃 

12,364 𝑙𝑏 > 1.5 × 789.6 𝑙𝑏 

12,364 𝑙𝑏 >  1,184.4 𝑙𝑏 ✓ 

Finally, we calculate the number of lifecycles that this bearing can withstand. We first calculate 

the L10 life of the bearing. As we are using a roller bearing, we set the exponent to 10/3: 

𝐿10 = (
𝐶

𝑃
)

10
3
= (

14,388 𝑙𝑏

789.6 𝑙𝑏
)

10
3
= 1.59 × 104 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑟𝑒𝑣𝑠 = 1.59 × 1010 𝑟𝑒𝑣𝑠 

As we want a bearing failure rate of 1% (a reliability rate of 99%), we set the reliability factor 

𝐾𝑅=0.99 = 0.21 as defined by Table 11-5 from Norton. We get: 
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𝐿1 = 𝐾𝑅=0.99 × 𝐿10 = 0.21 × 1.59 × 1010𝑟𝑒𝑣𝑠 =  3.34 × 109 𝑟𝑒𝑣𝑠 

We calculate the number of anticipated of loading cycles that the bearing needs to survive, 

assuming that the bearing withstands maximum loading throughout the entire flight time. We use 

an adjusted gear ratio of 2.8: 

𝑁𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑 = 835 𝑟𝑝𝑚 × 60
𝑚𝑖𝑛

ℎ𝑟
× 2000 ℎ𝑟𝑠 × 2.8 = 2.8056 × 108 𝑐𝑦𝑐𝑙𝑒𝑠  

We then check whether this bearing can withstand the number of anticipated load cycles. We use 

a safety factor of SF=1.5: 

𝑆𝐹 × 𝑁𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑 < 𝐿1 

1.5 × 2.8056 × 108 𝑟𝑒𝑣 < 3.34 × 109 𝑟𝑒𝑣 

4.2084 × 108𝑟𝑒𝑣 < 3.34 × 109 𝑟𝑒𝑣✓ 

 

Just as we did for bearing 8, we were able to verify the following design criteria for bearing 7 

under radial loading, with a safety factor of SF=1.5: 

1. The bearing’s certified rotational speed is greater than the rotational speed of its gearbox 

shaft.  

2. The bearing’s static load ratings are greater than the anticipated applied loads. 

3. The bearing calculated lifetime with a reliability of R=0.99 (1% bearing roller failure) is 

greater than the anticipated number of cycles.  

Bearings 1 to 7 are all bearings that only have a radial load, so the same above calculation can be 

applied to these bearings.   

Full Bearing Intermediary Calculations 
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Annex F: Key Calculations 

Key 1: 

𝜏 =
1527𝑙𝑏

0.5𝑖𝑛 ∗ 0.25𝑖𝑛
= 12223.1 𝑝𝑠𝑖, 𝜎′ = √3𝜏 = 21171 𝑝𝑠𝑖, 𝑁𝑠ℎ𝑒𝑎𝑟 =

53000 𝑝𝑠𝑖

𝜎′
= 2.50 

𝜎𝑏𝑒𝑎𝑟𝑖𝑛𝑔 =
1527 𝑙𝑏

1
2 ∗ 0.5𝑖𝑛 ∗ 0.25𝑖𝑛

= 24446 𝑝𝑠𝑖, 𝑁𝑏𝑒𝑎𝑟𝑖𝑛𝑔 =
44000 𝑝𝑠𝑖

𝜎𝑏𝑒𝑎𝑟𝑖𝑛𝑔
= 1.80 
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6. Drawings 

Drawing 6.1: Exploded Gearbox 
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Drawing 6.2: Gearbox Exploded Assembly with Labels for Keys 
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Drawing 6.3: Input Gear 
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Drawing 6.4: Output Shaft 

 

 


