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Abstract:

The goal of Solar Impulse, to circumnavigate the world with no fuel, requires a lightweight aircraft.
This report outlines the design and optimization process for a gearbox intended for this project.
The gearbox must adhere to power and size requirements while optimizing for weight. The gearbox
has a double branch double reduction layout, and its components adhere to American Gear
Manufacturers Association (AGMA) and American Society of Mechanical Engineers (ASME)
standards. All components have a safety factor greater than 1.5, as is industry standard. Detailed
analysis and computation lead to a final design weighing 47.38 Ibs, outputting a shaft speed of 835
RPM, with a total gear ratio of 6.558. The gearbox is lightweight and is designed to last the full
lifetime of 2000 hours.
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1. Introduction

The goal of the Solar Impulse project is to fly around the globe with no fuel onboard. This poses
many unique challenges, such as optimizing efficiency, weight, and safety. The objective of this
project is to design a gearbox for this aircraft. We are supplied with unlimited funds for this project
which leads to a high-performance design made to minimize weight. Our gearbox is a double
branch double reduction gearbox with the general layout given in Figure 1.
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Figure 1: Double Reduction Diagram.

To be conservative we are considering our system to be operating at its maximum power ratings
100% of the time. This means our motor driver, which is connected to the input shaft, will be
operating at 60 HP at 5,500 RPM for 2,000 hours. The propeller, which is the output shaft, will be
rotating at 835 RPM producing 1,000 Ibs. of axial force. Additionally, our gearbox must be less
than 30x45x45 cm in dimension. The gearbox specifications are tabulated in Table 1 below.

Table 1: Gearbox Constraints.

Gearbox Specifications
Max Dimensions (X X Y X Z) [cm] 30 X 45 x 45
Temperature Range [°C] [-40, 40]
Gear Ratio 6.5882
Power [HP] 60
Safety Factor 1.5
Propeller mass [kg] 100
Thrust [1bs] 1000
Lifetime [h] 2000
Input RPM [rpm] 5500
Output RPM [rpm] 835

Given these constraints, we optimized our design for weight while holding a safety factor of 1.5
due to the high-risk aerospace application. The components of our gearbox are the gears, shafts,



keys, and bearings. We iteratively designed these parts following American Gear Manufacturing
Association (AGMA) and American Society of Mechanical Engineers (ASME) standards. Figure
2 is a diagram of our gearbox and has the labels we will use to refer to specific parts in this report.
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Figure 2: Gearbox Diagram Labelled.

2. Theoretical Development

2.1 Gears

2.1.1 Initial Comments

Note that the gear ratio between gears 2-4 and 3-5 is equal to 1 since they are on the same shaft,
1.e. they will have the same rotational velocity. N refers to the number of teeth on a specified gear.

Table 2: Gear Ratio Relationships.

Gear Ratio Value
Gear Ratio between 1 and 2, m,4 N, /N,
Gear Ratio between 1 and 3, m34 N3 /N,
Gear Ratio between 2 and 4, m,, 1
Gear Ratio between 3 and 5, ms; 1
Gear Ratio between 4 and 6, mg, Ng/N,
Gear Ratio between 5 and 6, mgs Ng/Ns

All referenced Tables or Figures are in the Annex A and B. The theory behind the analysis process
stems from the one described in Chapter 12 of Machine Design: An Integrated Approach by
Norton. [1]

2.1.2 Design Requirements

Before diving into the design of the gears, requirements need to be specified. As explained in the
problem description, the gears will need to output a rotational velocity of 835 rpm when subjected



to an input of 60 HP and an input rotational velocity of 5,500 rpm. The maximum lateral distance
must be lower than the allowable distance in the wing axis. This value is found in the gear box size
requirements and is equal to 45 cm, or 17.7 inches. The maximum lateral distance is given by
either of the two following equations, (1) and (2).

2
Lwing axis — dgl + dgz + dg3 + P_d1 (D

2
Lwing axis — dg4 + ng + dg6 + P_dz (2)

Where pg4; corresponds to the diametral pitch of gears 1,2 and 3 and p,4, corresponds to the
diametral pitch of gears 4,5 and 6. d; corresponds to the pitch diameter of each gear. The allowable
distance in the vertical axis is of the same value. Hence, the addendum diameter of the largest gear
must not surpass 17.7 inches. As outlined by the project description, the mass of all gears must be
minimized as much as possible. In terms of the gear design, this translates by having the lowest
total volume. To approximate the total volume of the gears, each gear will be approximated as a
cylinder of height equal to the face width of the gear and a cross-sectional area equal to the pitch
circle. Consequently, our design will be optimized to have the lowest allowable pitch diameter and
face width. Two types of failures will be evaluated for the gears: bending and surface contact (will
also be denoted as pitting in this report) failure. Since this project will be completed for an
aerospace industry application, the minimal safety factor for both types of failure are required to
be equal or above 1.5. Additionally, a contact ratio between 1.4 and 2 is required as this ensures
that the load is not concentrated on a singular tooth. It also accounts for errors in tooth spacing that
can occur during manufacturing. Finally, the project requires us to use coarse gear, which entails
that the diametral pitch of the gears should not surpass 20 (Table 12-2). The following table
summarizes these requirements

Table 3: Summary of Design Requirements for Gears.

Parameter Requirement
Length in wing axis < 17.7 in.
Length in vertical axis < 17.7 in.
Output RPM, wg wg < 835 1rpm
Safety Factor for Bending Failure, Ny, 1.5 < Ngy
Safety Factor for Pitting Failure, Ny, 1.5 < Ng,
Pitch Diameter, d,, Minimal
Face Width, F Minimal
Contact Ratio, m,, 14 < m, <2
Diametral Pitch, p, pa < 20




Governing Equations for Gear Design

The equations that governed the design decisions were the safety factor equations, which are
functions of the stress and the fatigue strength equations. Those are listed below, in US units.

(3)
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Bending Fatigue Strength: Sz, = %Sﬂ,r (4)
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Surface-contact Stress: o, = C, \/E (5)
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Surface-contact Fatigue Strength: Sp. = %S rer (6)
TVR

Bending Safety Factor: N, = i (7)

Op
Surface-contact Safety Factor: N, = % (8)

As observed from the listed equations, for both bending and pitting, the objective is to minimize
the stresses and maximize the strengths.

Constant Parameters

There are quantitative and qualitative parameters that will remain constant for each gear
throughout the optimization. First, all gear teeth will have an involute form. This will ensure that
center-distance errors in manufacturing and assembly will not affect the velocity ratio. The center-
distance between two gears, C, is qualified as the distance between both gear centers. Furthermore,
the length of tooth was chosen to be full depth as it will allow more working depth for the gear
contact. This is ideal because, for full-depth teeth, the bending geometry factor J, is higher
regardless of the pressure angle or the type of loading. As seen in the bending stress equation, there
i1s an inverse proportionality between the bending stress and the bending geometry factor.
Additionally, since cost is not an issue for this project, it was assumed that the gears could be
precisely manufactured, i.e. manufacturing tolerances will be very small. Hence, the gears’ loads
will be at the highest point of single-tooth contact (HPSTC). Furthermore, for the cases of full-
depth teeth with HPSTC loading, ] is higher at a pressure angle of 25° compared to 20°. The
pressure angle for each gear mesh contact was decided to be 25 °to minimize bending stresses as
much as possible. As for the quality index of the gears, Q,,, the chosen value is 11. Since our design
is for an aircraft engine drive, according to Table 12-6, quality index should be between 10 and 13
[1]. Furthermore, it was initially estimated that the average pitch line velocity for the gears would
be in between 2000 and 4000 feet per minute (fpm). A quality index of 11 was then chosen as it
was the middle value in the suggested range of gear qualities of Table 12-7. Finally, a reliability
of 99 % was chosen as it is considered adequate for aerospace applications.



Table 4: Constant Parameters for Gears.

Parameter Value
Length of teeth Full-Depth
Location of Loading HPSTC
Pressure Angle [degrees] 25
Quality Index 11
Reliability [%] 99

Choice of Material

As explained previously, the objective is to minimize weight while ensuring the gears will not fail
in bending or pitting. Therefore, a material with low density and high surface-contact/bending
fatigue strengths is required. A selection of materials was presented in the textbook with all the
required properties to properly design the gears [1]. The lightest materials to be found were
variations of steels, which had strong bending and surface-contact strengths, but not necessarily a
low density. By conducting supplementary research outside of the textbook to find a lighter
material with similar fatigue strengths, it was quickly realized that the relevant information to
assess the validity of our design was most of the time not trustworthy. In other words, there was a
lack of confidence in the validity of properties of various materials found outside of the textbook
list. Obtaining a complete analysis of our gearbox with a high level of confidence in the properties
of the chosen materials was prioritized. Hence, only materials from Table 12-20 and 12-21 were
considered [1]. Since all steels had very similar densities, the chosen material for all gears was the
highest grade of 2.5% Chrome, Nitrided Steel as it offered the highest bending and surface contact
strengths.

Table 5. Chosen Material Properties.

Material Property Value
Density [Ib./in’] 0.2775
Bending-Fatigue Strength [psi] 65,000
Surface-Contact Strength [psi] 21,6000
Bending Stress Factors

The Bending Strength Geometry Factor, J, is a function of the number of pinion and gear teeth
in a gear mesh. It will only be defined during the optimization process and updated constantly for
each iteration. It will be determined using the tabulated values in Table 12-13, which is for full-
depth teeth under HPSTC loading at 25° pressure angle [1]. It varies between the pinion and the
gear of a singular gear mesh.

The Dynamic Factor, K, accounts for the pitch line velocity, V;, in fpm and is given by the
following equation (9).
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Where A =50+ 56(1 —B) and B = @ for 6 < Q, < 11. Fortunately, our quality index

value is 11, which makes this relationship valid. Similarly to the bending strength geometry factor,
the value of the dynamic factor will constantly be updated as the number of teeth on the pinion
and gear change. The pitch line velocity, V;, is a function of the rotational speed of the gear, w,
and its pitch diameter, d,,. Pitch diameter will vary depending on the chosen diametral pitch, pq,

i.e. the number of teeth per inch on a gear, and its total number of teeth, N.
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The Load Distribution Factor, K,,,, is a function of the face width, F. Since this value is
minimized as much as possible to have a low weight, it will initially be assumed to be lower than
2 in. This assumption will be confirmed later. Hence, per Table 12-16, the value of K,,, will be set
equal to 1.6 for each gear [1].

The Application Factor, K ,, varies depending on the stability of the driving machine. The motors
driving the propeller are electric motors and loads are considered uniformly applied as it is an
aircraft with a very niche application, meaning that the motors will be designed as to vibrate and
impede as little as possible on the aircraft’s performance. Following these assumptions and Table
12-17, the value of K, will be set equal and constant to 1 for each gear [1].

The Size Factor, K, is set to 1 since, for this case, there are no situations where the size of a
certain geometrical parameter of the gears would affect the overall stress.

The Rim Thickness Factor, K g, accounts for situations where the rim depth is close to the tooth
depth. This factor will be revised after the design of the shafts, as they will dictate what each gear
bore diameter will have to be. In the case where the rim depth and tooth depth are similar, Kz will
be updated using the following equation (12) and will be applied to the concerned gear.

tr
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Where tj is the rim depth and h; is the tooth depth. For initial conditions, K will be set to 1.
The Idler Factor, K, is set equal to 1 for all gears since there are no idler gears in the design.

Surface-contact Stress Factors

The factors C,, C,,, C,, and C; are respectively equal to K, K,,,, K, and K.



The Surface Geometry Factor, I, factors in the radii of curvature, p, and p,, and the pressure

angle, ¢. It is identical for both the pinion and the gear. For an external gearset, it is given by the
following equations (13) through (15).
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pg = Csing — p,; (15)

Where 7, is the pinion pitch radius, x,, is the pinion addendum coefficient, which is equal to 0 for
full-depth teeth, C is the center distance between the pinion and the gear. Since some of those
values depend on the chosen diametral pitch and number of teeth, this factor will iteratively be
updated.

The Elastic Coefficient, Cp, accounts for differences in materials. Since all gears are made from
the same type of steel, using Table 12-18, Cp is constant and equal to 2300 for each gear [1].

The Surface Finish Factor, Cp, is constant and equal to 1 for each gear as there will be no rough
surface finishes. As cost is not an issue, proper procedures will be followed to have an ideal surface
finish on the gears.

Corrected Fatigue Strengths

For both bending and surface-contact strengths, a correcting factor is known as the life factor and
accounts for the expected amount of load cycles of each gear. Before defining each fatigue-strength
factor, load cycles for each gear need to be specified. The number of load cycles corresponds to
the number of mesh contacts under load of a singular gear tooth. In general, one tooth will
experience one load per rotation of the gear. Although, as seen on Figure 2, gears 1 and 6 have two
contact meshes. Hence, for one full gear rotation, one tooth will experience two load cycles.
Furthermore, the amount of load cycles will also depend on the rotational velocity of the gear. Our
input specifies 2000 hours of operation, meaning that gear will rotate at 5500 rpm for 2000 hours.
Therefore, gear 1 will complete 6.6 X 108 rotations, which will mean around 1.32 x 10° load
cycles. The number of cycles for the other gears ends up being a function of the gear ratio between
the other gears. Since they will be rotating at different speeds, they will not complete as many
cycles. Although, gears 3 and 5 and 2 and 4 are on the same shaft and will therefore have the same
rotational speed and the same amount of load cycles. The following table summarizes the load
cycles for each gear.

Table 6. Load Cycles for Each Gear.

\ Gear Number \ Load Cycles, N,
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Bending-Fatigue Strength Factors

As explained, the Life Factor, K;, accounts for total load cycles of the gear, N;. The equation
used to calculate the factor is given below in equation (16).

K, = 1.3558 N; %0178 (45)

This was chosen as it is the upper limit of the range of life factors for loads beyond 107 load cycles
shown in Figure 9. It will yield a higher bending fatigue-strength, which will allow the design to
have a higher bending safety factor. Since most of the total load cycles for each gear is a function
of their corresponding gear mesh ratio, this value will update as iterations to optimize the gearbox
will be completed [1].

The Temperature Factor, K7, accounts for the operating temperature of the gearbox. According
to specifications, that temperature should not surpass 40°C. Therefore, Ky is set to 1 and remains
constant throughout iterations.

The Reliability Factor, Ky, is given by Table 12-19, where for a reliability of 99% as precised in
the gear assumptions, K has a value of 1 and remains constant [1].

Surface-Contact Strength Factors

Cr and Cp are respectively the same as K and Kj.

The Life Factor, C;, is calculated in a similar manner as the life factor for bending. From Figure
10, the upper limit of the range of life factors for loads beyond 107 load cycles is also taken. Hence,
C,, is given by the following equation (17) [1].

C, = 1.4488 N~0023 (17)

Again, this value will change as change gear dimensions are varied.



The Hardness Ratio Factor, Cy, considers the hardness ratio between the materials of the pinion
and the gear. Although, for this design, all gears are of the same material. Therefore, this parameter
is constant and equal to 1.

Iterative Process

For simplicity, gearset 1 designates gears 1, 2, and 3, and gearset 2 designates gears 4, 5, and 6.
After defining all the stress and fatigue-strength factors, whether they were constant or varying,
an iterative process was completed to optimize for the lowest gear weight possible. Initially, the
face width of each gear was set to its maximal allowed value, which is, according to ASME
standard, 16 /p,. Furthermore, it is ideal to have the same face width, F, and diametral pitch, p,,
within a gear mesh, meaning the gears in gearset 1 will have the same face width and diametral
pitch. Gearset 2 will also have the same relationship between its gears, although it is possible that
face width and diametral pitch varies from gearset 1 to 2. Another consideration is that the distance
between the center of gears 2 and 3 must be the same as the distance between the center gears 4
and 5 to ensure that the gearbox remains symmetrical.

The iterative process was done using the following method: all functions were coded into Excel,
which took as inputs the number of teeth on each gear and their assigned diametral pitch. From
those inputs, the output rotational velocity, safety factors for bending and surface-contact stresses,
total length in the wind axis and center distances between gears 2-3 and gears 4-5 were
automatically calculated. If the requirements in terms of output shaft rotational velocity, size and
stress safety factors are satisfied, then the chosen geometrical parameters were deemed adequate.

The last parameter that is updated constantly throughout this process that has not been mentioned
yet is the tangential force applied on the gear teeth, W;. It is given by the following equation (18).

T. T,
W, =-=L=-" (1s)
n T

Where T, is the torque applied on the pinion (T, for gear). As seen in this relationship, the
tangential force remains the same for the pinion and the gear of a gear mesh. Furthermore, the
torque experienced by a gear will increase if the gear ratio is larger than 1.

The torque at gear 1 is given by the following equation (19).
_ Pinput
T, = ZHE (19)

Since our gearbox requires a rotational speed reduction, gear ratios larger than 1 are expected for
each gearset. Hence, the torque is expected to increase between gear 1 and gear 6.

Table 7 summarizes how each geometrical and force parameter will vary for each gear depending
on the chosen gear ratio.
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Table 7: Rotational Velocity, Torque and Tangential Force for each Gear.

Gear
Number 1 2 3 4 5 6

5500 5500 Wy W3

w 5500 0)2 0)3 - =
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w Ty Ty *my, Ty * m3q T, T3 T, xmey T3 *Mgs
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The first iteration that was done was for the case where the two gearsets had the same gear ratio.
To find the individual gear ratio of each gearset, the square root of the overall gear ratio was taken.
Using Excel, combinations of gear and pinion teeth numbers were found that matched this ratio.
The next step was to choose a diametral pitch. A higher diametral pitch would lead to a smaller
gear size and smaller face width. All gear and pinion teeth combinations were tested from the
highest possible diametral pitch, i.e. from 18 to a value where the size requirements (17.7 in. in
the wing axis) would no longer be met. Unfortunately, for all combinations of gear and pinion
teeth, either some gears had safety factors below 1.5 in bending or pitting or were too big to fit in
the size constraints. Hence, it was concluded that gearsets 1 and 2 needed different diametral
pitches.

The main issue arising from having different diametral pitches between gearset 1 and 2 is that the
symmetry of the gearbox might not be respected. In other words, the center distances between
gears 2-3 and gears 4-5 need to be equal. This was done by applying the following constraint on
the number of teeth on gear 6.

d1 + dz = d4 + d6 (20)
(N; + N) _ (N4 + N¢)

(21)
Pa, Pa,
Pa,
N¢ = —(N; + N;) — N, (22)
Pa,

The result is rounded to the closest integer. py and pg, correspond to the pitch diameter of gearsets
1 and 2 respectively. Since gearset 1 will have higher rotational speeds, it was assumed that it
would have a higher diametral pitch. Furthermore, the torque is higher on gearset 2, it would then
have a lower diametral pitch. This would lead to bigger teeth on the gear which would help sustain
higher stresses. Although there is a tradeoff, since for a higher pitch diameter a higher number of
teeth might be required to respect the required safety factor, which might make the gears too big.
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The iteration process for this part went as follows:

Set pitch diameter of gear 1 to highest possible value, i.e. 18.

Adjust gear 1 teeth number to ensure that bending and surface-contact safety factors are
satisfied.

Adjust gears 2-3 number of teeth to have a gear ratio, m,; and ms4, close to 2.566 (value
determined previously). Ensure that total length in wing axis is lower than 17.7 in.

Set pitch diameter of gears 4-5 to highest possible value, i.e. 18.

Adjust gears 4-5 number of teeth to ensure that overall gear ratio satisfies output rotational
velocity. Verify if bending and surface-contact safety factors are satisfied.

Gear 6 number of teeth is automatically updated through constraint in equation (22).

The following actions were taken depending on each case described:

If bending and surface-contact safety factors are not satisfied for gears 4-5, reduce
diametral pitch to closest standard value from Table 12-2.

If, for any diametral pitch value for gears 4-5, output rotational velocity of gearbox is not
adequate, increase number of teeth on gears 2-3 until maximum wing axis length is
achieved. If output velocity is still not respected when that length is reached, reduce gear
1 diametral pitch to next closest value in Table 12-2.

Repeat process until all requirements are satisfied.

For each valid combination of diametral pitch and number of teeth, the face width was reduced as

much as possible without compromising the safety factors to minimize mass. After iterating

through that process, the lightest combination of diametral pitch and gear teeth that respected
requirements was chosen. It is described in the results part of this report. The stress and strength

factors used to calculate the safety factors for that chosen design are listed in Table 8 and Table 9

below.
Table 8. Bending and Surface-Contact Stress Factors.
Gear Number | 1 | 2 | 3 | 4 | 5 | 6
Bending
] 0.47 0.512 0.512 0.4025 0.4025 0.4875
K, 0.8765 0.8765 0.8765 0.9152 0.9152 0.9152
K., 1.6 1.6 1.6 1.6 1.6 1.6
K, 1 1 1 1 1 1
K 1 1 1 1 1 1
Ky 1 1 1 1.548 1.548 1
K; 1 1 1 1 1 1
Surface-Contact
C, 1 1 1 1 1 1
Cn 1.6 1.6 1.6 1.6 1.6 1.6
C, 0.8765 0.8765 0.8765 0.9152 0.9152 0.9152




Cy 1 1 1 1 1 1
Cp 2300 2300 2300 2300 2300 2300
| 0.1365 0.1365 0.1365 0.1109 0.1109 0.1109
Cr 1 1 1 1 1 1
Table 9: Fatigue-Strength Factors.
Gear Number \ 1 \ 2 \ 3 \ 4 5 6
Bending
K; 0.9329 0.9590 0.9590 0.9590 0.9590 0.9648
Ky 1 1 1 1 1 1
Ky 1 1 1 1 1 1
Surface-Contact
C, 0.8938 0.9262 0.9262 0.9262 0.9262 0.9334
Cr 1 1 1 1 1 1
Cg 1 1 1 1 1 1
Cy 1 1 1 1 1 1

As explained previously, gears 4 and 5 have a similar rim depth compared to their tooth depth.
Hence, the rim thickness factor was adjusted.

A sample calculation for safety factor of gear 4 is provided in Annex C.

2.2 Shatfts
2.2.1 Preliminary Design

Before proceeding with a preliminary design of the shafts, some assumptions were made for the
entirety of the shaft assembly. First, the material remained the same throughout the entirety of the
design process. SAE 1020 Machined Steel of S,;; = 65 kpsi and S, = 38 kpsi [1] was used
uniformly across the shafts, as it provides a relatively light metal with a reasonable strength, which
makes it useful for simple shaft assemblies and general machinery. Furthermore, considering that
the weight of the shaft is predicted to be significantly lower than that of the gear, the different
materials were not explored to ensure a more efficient and concise design process. Second, a notch
radius of 0.01 inch was assumed throughout all stress concentrations. From this assumption, notch
sensitivity in bending and torsion could be calculated from the notch radius and the ultimate
strength of the steel. Note that for torsion, a curve of 20 kpsi greater was used to calculate the notch
sensitivity factor. From there, another assumption was made concerning the stress concentration
factor. It was assumed to be 3.5 in bending, 2 in torsion, and 4 at the keys. These assumptions were
made in agreement with Peterson’s Stress Concentration Factors, which display these values as
approximate maxima for the expected loadings of the shafts assembly [2]. Hence, these factors
will be used all throughout, yielding results with a factor of safety slightly higher than reality. All
parameters related to stress concentrations can be found in Table 10 below.
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Table 10: Design Parameters for Stress Concentrations.

Parameter Name Parameter Symbol Value [unitless]
Notch radius r 0.01
Stress Concentration Factor in Bending K; 3.5
Stress Concentration Factor in Torsion K 2.0
Stress Concentration Factor at Keyhole Kt key 4.0

From these stress concentration factors, the fatigue factors were calculated in each case and were
used throughout this section to calculate the diameters of the shafts. From the calculations, it was
determined that in all cases, the fatigue concentration factors were equal to their mean counterpart.
This was done by verifying that the maximum nominal stress did not increase past the ratio of

yield strength over fatigue concentration factor. These values can hence be found in Table 11
below.

Table 11: Design Parameters for Fatigue Factors.

Parameter Name Parameter Value [unitless]
Symbol

Notch Sensitivity in Bending dbending 0.5

Notch Sensitivity in Torsion Qtorsion 0.57

Fatigue Concentration Factor in Bending K ¢ 2.25

Fatigue Concentration Factor in Torsion Kf s 1.57

Mean Fatigue Concentration Factor in Bending K m 2.25

Mean Fatigue Concentration Factor in Torsion K Fsm 1.57
Fatigue Concentration Factor in Bending at Keyhole Kf key 2.5
Fatigue Concentration Factor in Torsion at Keyhole K £s.key 2.7
Mean Fatigue Concentration Factor in Bending at Keyhole Krm key 2.5
Mean Fatigue Concentration Factor in Torsion at Keyhole K Fsm,key 2.7

From the material selection, the required strengths could be obtained. As the endurance strength
of the material is of interest for the design of the shaft, it was calculated using equation (23).S, =

CloadCsize Csurf Ctemp CreliabSe,Se = Cload Csize Csurf Ctemp CreliabSe,
Se = CloadCsizeCsurfCtempCreliabSe, (23)

The uncorrected endurance strength, S,’, was calculated from the steel standards recommending a
value of half the ultimate tensile strength for steels with an ultimate tensile strength superior to
200 kpsi, as suggested in Figure 7. The coefficients could then be obtained. See Table 12 for the
coefficient values for the corrected endurance strength.
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Cioaa 18 linked to the loading effects. In our case, almost exclusively bending and torsion are
present. However, a thrust load is present on the output shaft. It was determined that the effects of
the thrust force had negligible effect on the diameter calculations compared to the output torque,
and hence it was not considered in the calculations of the load coefficient. Given that for both
bending and torsion the respective load coefficients are equal to 1, it was set accordingly.

Cize 1s liked to size effects. From Figure 8, the size coefficient is equal to 1 for diameters larger
than 0.3 inch, which is expected in our case.

Csurs 18 liked to surface effects. Our shaft material is expected to be machined and will be

calculated using the following equation (24). From Figure 8, the coefficients for machined material
can be found.

Csurf = A(Sut)b (24)

Ciemp 18 liked to temperature effects. It is assumed that the assembly is used at room temperature,

and hence the coefficient is equal to 1.

Celiap 18 linked to the reliability of the material. We chose our material to have a reliability of
99.9999%, hence the coefficient can be found to be 0.62 from Table 40.

Table 12: Design Parameters for Endurance Strength.

Parameter Name Parameter Symbol Value Units
Uncorrected Endurance Strength S, 32500 psi
Load Coefficient Cioad 1 -
Size Coefficient Csize 1 -
Surface Coefficient Csurr 0.84 -
Temperature Coefficient Ceemp 1 -
Reliability Coefficient Creliab 0.62 -
Endurance Strength Se 16926 psi

Before entering the design phase for each of the shafts, an overall dimensioning of the shaft
assembly was made as a preliminary constraint. The maximum length was set to a maximum of
30 cm, or 11.81 inches in our case. The overall goal was to not go over 11 inches and hence remain
within the desired dimensions. The assumed dimensions in the following sections were hence
decided from this constraint.

It should be noted that the lengths of every shaft potion supporting the bearings were left as
variables in the design process. This was done as these sections support only bearing reaction
forces and will later be optimized to fit the final assembly. The exact dimensions will be found in
Table 34 in the result section.
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Note that the equations used in this sections come from Norton, Machine Design: An Integrated
approach unless specified [1].

2.2.1.1 Input Shaft

From the project definition, the preliminary parameters were defined. It was outlined that the input
shaft would have a maximum RPM of 5500, along with a maximum horsepower of 60HP [3].
Throughout the design of this gearbox, it was assumed that maximum loading conditions were
present. From these design parameters, the torque applied to the input shaft was calculated. For
reference in the design process, a rough schematic of the input shaft is included in Figure 3 below.
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Figure 3: Input Shaft Schematic.

From this initial idea of a design, bearing reaction forces along with moments induced by the gears
could be calculated. To achieve this, dimensions needed to be set. From the length constraint set
in the previous subsection, values of length were set to a=2 in and b =1 in. Hence, reaction forces
and moments at various points can be found in Table 14 below. Note that points A, B, and C from
Figure 3: Input Shaft Schematic. Figure 3 are used as references. Note also that bearings (B1 and
B2) will be situated at points A and C, and a gear 1 will be situated at point B along with its
respective key.

Table 13: Dimensions for the Input Shaft.

Dimension Value [in]
a 2
b 1

From the load configuration, one may observe that no tangential or radial force is acting on the
shaft because of the symmetric gears, which will result in no forces and/or moments being induced
on the shafts caused by the gears. Hence, the preliminary design of the input shaft was initially
solely dependent on the torque applied. However, upon consideration for the overall gear assembly
weight, it was decided that the weight of the gears would be considered as an alternating load on

16



the shaft. Hence, alternating moments were calculated all throughout the shaft. Note that the
reaction forces will be displayed in the sample calculation in the annex for clearer display of results.
The relevant loading parameters for the design of the input shaft can be found in Table 14 below.

Table 14: Loading Parameters for the Input Shaft.

Parameter Name Parameter Symbol Value Units

Mean Torque T 687.5493542 Lb-in
Moment at point A My 0 Lb-in
Moment at point B Mg 1.5762 Lb-in
Moment at point C M, 0 Lb-in

Then, using the equation for diameter displayed below in equation (25), the preliminary shaft
minimum diameters at different points of interest could be calculated. It should be noted that a
factor of safety of 1.5 was used to obtain these results. The initial minimum diameters can be found
in Table 15 below. Note that the equation used is equation 10.8 by Norton in Machine Design: An
Integrated Approach [1]. It should also be noted that fatigue factors for keys were used for the
calculations of d;, as a gear and key combination will be present at this location.

(25)

2 2
L g | JOsrm ) +J(Kmem)2+§(xfsmrm)
- T Se Sut

Table 15: Initial Diameters Values for Input Shaft.

Diameter Value [in]
dy 0.606360916
d, 0.725239877
d, 0.603444579

2.2.1.2 Intermediate Shafts

The intermediate shafts design process was slightly different, as tangential and radial forces from
the gears were now considered. This hence meant that larger reaction forces and, inevitably,
alternating moments would be present. As per the input shaft, the first step done was to calculate
the torque acting on the shaft. Once again, this torque would be acting as a mean torque in our
calculations. In this case, the power transmission through gears is done using the transmitted force.
Hence, given that these forces are the ratio between the torque and gear radius, the transmitted
torque could easily be calculated using the following equation (26).

_ Tpinion*Tgear (26)

Tgear - S
pinion
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Next, the dimensioning of the shaft was decided. To optimize the design, they were based on the
face width of the gears, and the a dimension was decided based to minimize the gap between B2
and B6. See Figure 2 for reference. A schematic of one intermediate shaft can be seen in Figure 4
below, along with Table 16 displaying the dimensions.
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Figure 4: Intermediate Shaft Schematic.

Table 16: Dimensions for the Intermediate Shaft.

Dimension Value [in]
a 3
b 0.75
c 2

Taking one singular shaft, one can observe that gear forces will be present at both point B and D,
see Figure 4 above. Hence, this will induce reaction forces at point A and E, meaning at the
bearing’s location. Note that the direction of the gear forces will be opposite for the two
intermediary shafts but will be equal in scalar values as the gears are designed to be symmetrical.
They will hence transmit equivalent radial (z-direction) and tangential (y-direction) forces.
However, the tangential values will not be equal because of the gear weight configuration. Hence,
the moments and forces will have to be calculated for both shafts to ensure a safe design. However,
the final shafts will be designed to be identical and satisfy both load configurations. See Table 17
below for the different load parameters. Once again, only the torque and moments will be displayed,
and the relevant forces were calculated as displayed in sample calculations found in the annex.
Note also that the total moments are the sum of moments in the y and z direction, given that gear
forces have both a radial and tangential component and hence induce moments in both directions.

Table 17: Loading Parameters for the Intermediate Shaft.
Parameter Name Parameter Symbol Value [Ib-in]

Mean Torque T, 1617.763186
Total Moment at

M, 0
point A 4
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Total Moment at

M 113.2760408
point B B
Total Moment at
) M, 1807.541477
point C (Max value) ¢
Total M tat
ol Vloment a M, 1807.541477
point D
Total Moment at M, 0
point E

*Note that the value of moment at C is the maximum between values at B and D to consider the max loading in the section.

Then, using equation (25) used in the input shaft, the minimum diameter of the shaft at the various
locations were calculated. Once again, a factor of safety of 1.5 was used for the calculations. The

initial minimum diameters can be found in Table 18 below.

Table 18: Initial Diameters Values for Intermediate Shaft.

Diameter Value [in]
do 1.542656639
dqq 1.046110219
dis 1.706352725
d, 0.802615878

2.2.1.3 Output Shaft

The design of the output shaft resembled the process of the input shaft, as it is between two

identical pinions, transmitting equal and opposite forces to the gear. Hence, the shaft does not have

any tangential transmitted load that induces a bending moment. However, the weight of the gear

is considered and hence induces a moment. The gear present on the output shaft (G6) is the heaviest
one in the gearset at 20.11 1bs and is the main reason why the effect of weight was considered. As
per equation (26) used for the intermediate shafts, the transmitted torque was calculated.
Furthermore, the dimensions of the output shaft were also determined. Note that the dimensions
were determined based on the Figure 10-5 on page 601 of Norton [1]. The dimensiond; was
calculated apart of the design problem, but if can be changed depending on the fitting of the
propeller. A schematic of the output shaft is seen in Figure 5 below, along with the dimensions of

the shaft in Table 19.
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Figure 5: Output Shaft Schematic.
Table 19: Dimensions for the Output Shaft.

Dimension Value [in]
a 1.5
b 2
c 3.9370
d 1

In this configuration, the weight of the gear will have a downward force at B, while the weight of
the propeller will create a downward force at D. These forces will hence induce bending moments
throughout the shafts. Note that those forces, along with the reaction forces from the bearings will
be displayed in the appendix.

Unlike the other shafts of this gearbox, this output shaft is subjected to an axial force, which needs
to be considered for the design of this shaft. However, this axial force does not induce any moment
and hence equation (25) will not be used. The loading parameters can be seen in Table 20 below.

Table 20: Loading Parameters for the Output Shaft.

Parameter Name Parameter Symbol Value Units
Mean Torque T 4529.736922 Lb-in
Moment at point A My 0 Lb-in
Moment at point B Mg 177.3165882 Lb-in
Moment at point C M, 868.3014219 Lb-in
Moment at point D My 0 Lb-in
Axial Thrust Toxial 1000 Lb

To calculate the diameter of the shaft, the basic equation of line CD of the Goodman diagram was
used. For reference, see Figure 6 in the appendix below.
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The equation (25) was derived from the intersection of line CD for a constant ratio of alternating
and mean stresses. However, it was derived under the assumption that axial loads were 0 and only
torsional and bending loadings were present. Upon derivations, equation (27) below was obtained.

-1
(4KfmTaxial>2+3(16Kfsme)2\
d? nd3
32K ;Mg

Seﬂ'dS Sut

Ny = 27)

To find values for the shaft diameters, an iterative method using excel was conducted as the
difference in power of the diameter values in the equation makes it hard to solve. This formula
was then iterated with steady-increasing values of diameter until the output factor of safety reached
a value of 1.5. This was done using the different values of alternating moments and fatigue
concentration factors for each location of interest. The obtained values of diameters can be found
in Table 21 below.

Table 21: Initial Diameters Values for Output Shaft.

Diameter Value [in]
dy 1.47590
d4 1.42474
d, 1.47585
ds 1.21871

2.2.2 Corrected Design

Upon the completion of the preliminary design, some changes were made. It was brought to our
attention that the formulas used assumed a failure due to fatigue, and hence the factor of safety
represented a fatigue factor of safety. However, it meant that the calculated diameters may have
the required factor of safety in failure, but not in yielding. Hence, the obtained diameters were
used to calculate the factors of safety, and needed changes were calculated. The diameters were
put into the equation of line CD and DE, seen in equations (28) and (29) respectively.

4
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2.2.2.1 Input Shafts

The initial diameters of the input shaft along with the calculated fatigue and yielding factors of
safety can be found in Table 22 below. From equation (25), coming from (28) and (29), the
following equations were derived.
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Table 22: Initial Diameters of Input Shaft and Factors of Safety.
Diameter Value [in] Ny N,
do 0.606360916 1.5 0.886336176
d, 0.725239877 1.5 0.883012937
d, 0.603444579 1.5 0.876923077

From Table 22, all the shafts would yield before failing from fatigue. Hence, the initial diameters
that were calculated did not meet the requirements for our gearbox. From there, new diameters
were calculated from a refined formula of diameter seen in equation (32). Through these
calculations, a yielding factor of safety of 1.5 was used. This equation is based on equation (28)
and (29) above. The new diameters along with their factors of safety can be seen in Table 23 below.

1
3

3 2 3 2
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| = Sy S, (32)
Table 23: Corrected Diameters of Input Shaft and Factors of Safety.
Diameter Value [in] Ny N,
do 0.722595847 2.538540184 1.5
d, 0.865345899 3.402796457 1.5
d, 0.721684388 2.565789474 1.5

With these corrected minimum values, final shaft values were determined. Given that the
governing dimension is d, since it needs to be the size of a bearing bore, it was determined first.
It was scaled up to the closest bearing bore diameter. From this increase, the other dimensions
were increased accordingly to maintain the proportions of the dimensions and to fit the initial
design idea as seen in Figure 3. The value of d, was hence increased as to create a notch for better
gear-shaft assembly. The final dimensions can be found in Table 24 below.

Table 24: Final Diameters of Input Shaft and Factors of Safety.
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Diameter Value [in] Ny N,
dy 1 6.728180883 3.975620078
dq 0.9 2.866643986 1.687522483
d, 0.7974 3.461049275 2.023382653

2.2.2.2 Intermediate Shafts

The initial diameters of the intermediate shaft along with the calculated fatigue and yielding

factors of safety can be found in Table 25 below.

Table 25: Initial Diameters of Intermediate Shaft and Factors of Safety.

Diameter Value [in] Ny N,
d, 1.542656639 1.5 2.491004521
dq1 1.046110219 1.5 1.036551228
dyy 1.706352725 1.5 2.230123343
d, 0.802615878 1.5 0.876923077

Hence, the values of d;;1 and d, do not satisfy the minimum factor of safety of 1.5 in yielding.

These values were recalculated using equation (32) above. The corrected minimum diameters can
hence be found in Table 26 below.

Table 26. Corrected Diameters of Intermediate Shaft and Factors of Safety.

Diameter Value [in] Ny N,
dy 1.542656639 1.5 2.491004521
dqq 1.046110219 1.5 1.036551228
dis 1.706352725 1.5 2.230123343
d, 0.802615878 1.5 0.876923077

In a similar manner as for the input shaft, new dimensioning was set based on the closest bearing
bore diameter from d, going up. The final values can be found in Table 27 below along with both

factors of safety.

Table 27: Final Diameters of Input Shaft and Factors of Safety.

Diameter Value [in] Ny N,
dy 1.8 2.096304622 3.481269528
di1 1.2 2.308087871 1.585494234
dqi, 1.71 1.509639182 2.247030921
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d,

\ 0.984251969

2.766221132

1.617175431

2.2.2.3 Output Shafts

The initial diameters of the output shaft along with the calculated fatigue and yielding factors of
safety can be found in Table 28 below.

Table 28: Initial Diameters of Output Shaft and Factors of Safety.

Diameter Value [in] Ny N,
dy 1.21871 1.5 1.028232947
d, 1.42474 1.5 0.976896916
d, 1.47585 1.5 1.475719678
d; 1.13176 1.5 1.094737076

It can be observed from Table 28 that all calculated diameters would fail in yielding before failing
in fatigue. The iterative process was redone using equation (33) below. Note that equation is a
combination of equation (27) and (29) above.
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The iterative process was done until both factors of safety were ensured to be larger than the
required minimum of 1.5. The corrected diameters and their factors of safety can be seen in Table

29 below.
Table 29: Corrected Diameters of Output Shaft and Factors of Safety.
Diameter Value [in] Ny N,
do 1.38238 2.188367228 1.5
d, 1.6439 2.303580794 1.5
d, 1.48391 1.524714676 1.5
ds 1.3538 2.565932146 1.5

In a similar manner as for the input and intermediate shaft, new dimensioning was set based on the
closest thrust bearing bore diameter from d, going up. The final values can be found in Table 30
below along with both factors of safety. Note that as per the input shaft, the value of d, was
increased as to create a notch for better gear-shaft assembly.

Table 30: Final Diameters of Input Shaft and Factors of Safety.
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Diameter Value [in] Ny N,
dy 1.7 4.066597775 2.787034707
dq 1.65 2.329302164 1.516939676
d, 1.57480315 1.822166948 1.792473313
d 1.36 2.601301992 1.520761165

2.3 Bearings

We design our bearings based on these three design criteria:

e Load rating: we verify that the static load rating is higher than the static applied loads on
the bearing.

e Maximum operating speed: we verify that the bearing’s maximum expected rotational
speed is less than the maximum designed rotational speed for the bearing

e Number of loading cycles: we want to ensure that the Lp (number of cycles that the bearing
can withstand before 1% of the bearings fail, a failure rate that we defined which we’ll
explain more in detail below)

Since the gearbox plays a critical role in transmitting power from the motor to the propeller, we
chose conservative design criteria in order to increase the reliability of the bearings. As a result,
we introduced a safety factor of SF=1.5: this choice of value is a common safety factor in acrospace,
allows for a reasonable amount of margin between our selected bearings’ properties and the
anticipated loads and usage, and is small enough such that the safety factor doesn’t require the
bearings to be overly large or heavy.

Load Rating Criterion

For the load rating design criteria, the following relation determines whether radial bearing’s load
rating can handle load reactions

Co>SFxXP  (34)

where Co is the static load rating for our bearing, SF=1.5 is the safety factor, and P is the magnitude
of the applied loads on that bearing. For radial loading, following Norton’s example, we calculate
the magnitude of applied loads P as

P = /Fy2+FZZ (35)

In the case of combined axial and radial loading, we use the following relation to calculate P:
P=X-V-E+Y-F, (36)

where V, X, Y are coefficients that we obtain from Fig. 11.24 from Norton based on the ratio of
the axial load and the radial load, and the static load rating of the bearing. To keep this current
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section concise, we included a detailed calculation in the appendix with a numerical example to
determine the specific values for each variable.

Maximum Operating Speed Criterion

Given the maximum operating speed desired for each shaft and the bearing’s maximum operating
speed, we use the following relation to determine whether a bearing satisfies the maximum
operating speed criterion:

(‘)maxbearing speed > SF X Wmax desired (37)

where SF=1.5 is the safety factor.

Load Cycles Criterion

Given the equivalent applied load P and the bearing’s dynamic load rating C, we use the
following relation to determine the number of maximum cycles that the bearing can withstand up
to 10% of its components failing (the Lio number). Furthermore, because all of our bearings are
roller bearings, we set the exponent term to 10/3:

10
Ly = (%) ’ (38)

Next, we add the reliability factor Kr to calculate the number of cycles for a smaller failure rate.
As we want to maximize bearing reliability, especially for the gearbox which plays a critical role
in the airplane, we want a reliability of 99% and a failure rate of 1%. We apply this same
reliability factor to all Lio calculations, which is Kr=0.21 for a 1% failure rate as defined by
Table 11-5 from Norton (included in the appendix):

Ly = Kgr—gg99 X L1p  (39)

Finally, we want to verify that the resulting L, value is greater than the maximum anticipated
number of cycles, assuming a worst case scenario where the shaft continuously experiences the
maximum rotational speed:

Ll > SF X Lmax cycles (40)

where SF=1.5 is the safety factor and Lmax cycles 1s the max number of cycles that the shaft would
experience at the highest possible rotational speed.

Bearing Selection Process

We also determined that the diameter of each shaft acts as a constraint for the bore diameter of
each bearing. Accordingly, we determined that the bearing’s bore diameter must be larger than the
minimum shaft diameter estimate, but ideally smaller than the adjacent shaft notch’s diameter. The
bore diameter’s lower bound ensures that the shaft diameter is sufficiently large to withstand
support reactions for its designed operating lifespan, while the bore diameter’s upper bound should
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allow the bearing’s overall diameter to be smaller than its adjacent gears. While there are no hard
upper bounds for the bore diameter since we could machine additional notches, we do not want
the bore diameter to be too large. An oversized bore diameter means that the shaft diameter is
overdesigned at that site, and the bearings would take up an exceedingly large amount of volume
in the gearbox, making the design sub-optimal. Additionally, an oversized bore diameter would
require machining additional notches on the shaft, which adds additional complexity for
manufacturing the shaft and for analyzing stress concentrations.

As a result, for each bearing under radial loading conditions, we started with the first bearing
whose bore diameter was above the minimum shaft diameter. We quickly realized that the ball
bearings provided in Norton wouldn’t necessarily last the number of load cycles given our design
criteria and the applied loads on our shaft. As a result, we first turned to the NSK Ltd bearings
catalogue, as these set of bearings had high load ratings and had a high variety of options that we
could choose from. [4] However, we realized that the NSK catalogue did not offer an appropriate
thrust bearing that was sufficiently small to match our desired bore diameter of 40mm that could
support combined axial and radial applied loads. As a result, we decided to switch all our bearings
to the SKF catalogue [5], as we found a tapered roller bearing thrust bearing that had our desired
bore diameter of 40mm and still withstand our loading conditions. We made sure that the thrust
bearing could support both radial and axial loads, as some thrust bearings only support axial
loading. After we solved the thrust bearing design bottleneck, we were quickly able to find
candidate bearings that only needed to support radial loading for all the remaining bearing sites.

In an idealized setting, we would first start with the bearing with the smallest bore diameter, run
the load cycle calculations based on the bearing’s load ratings, and iterate with progressively larger
bearings until we satisfy all our design criteria. However, in our case, the choice of bore diameter
would also affect the shaft design: since the shaft is arguably more critical (as there are more
stringent design requirements for the shaft subject to our failure analyses), we would first
determine the minimum shaft diameter, determine an ideal largest bore diameter based on the
adjacent notch diameters on the shaft, and use these two values as minimum and maximum
thresholds for our bore diameter. As a result, we would start with the smallest available bearing
within this range, and progressively iterate with bearings with higher load ratings if needed. At
bearing sites 1 and 2 where the applied loads are very small, the number of safe loading cycles
would be several orders of magnitude larger than the target number of loading cycles. We decided
to keep these bearings regardless of this apparent difference in magnitude since these were the
smallest bearings available based on our design criteria, and the cost of these bearings is
manageable given our project budget. In general, we decided to use roller bearings instead of ball
bearings, because roller bearings can support higher rotational speeds and applied loading than
equivalent ball bearings.

In some cases that experienced high loading conditions, we added some extra margins on top of
our safety margins: as we were continuously iterating our shaft and gear designs in parallel, we
wanted to add some extra margins for the bearing requirements to ensure that changes in the shaft
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design could fluctuate within a reasonable amount and still stay within all of our safety
requirements for the bearing design criteria.

2.4 Keys

We needed keys in our design to transmit torque from the shafts to the gears as well as hold them
in place. We used a parallel key design to assess the stresses in our gearbox to simplify our
calculations, however, in practice we would use a tapered key to prevent axial slipping of our gears.
The general dimensions of the tapered key will be the same as the parallel keys. The ASME
standards define standard key sized for shaft diameters, shown in Table 10 from Norton. [1]
Therefore, the only design variables were the material and the length of the key. We chose a low
carbon ASE 1010 steel because it is weaker than the shafts and gears and we want the keys to fail
before the more expensive parts. However, we still want to maintain our minimum safety factor of
1.5 due to our high risk aerospace application and our large budget.

Keys fail in two ways: bearing and shear. Shear failure is fatigue failure due to the shearing of the
key between the gear and the shaft. To evaluate failure we must find the von mises stress. In our
application we have constant torque with no alternating component so the safety factor can be
calculated as follows:

Torque F
F=——r1=

1 _ _ Sut
r " widthxlength’ o = \/§T' Nsnear = o (41)

Bearing failure is from the compressive stress due to the contact between the key and the shatft.
Bearing stress is compressive therefore we consider it static. We can calculate the safety factors
with the following equations:

Force Sy
Nbearing -

Opearing = (42)

%*height*length ’ Obearing

We designed the lengths to set the safety factor of all of our keys greater than 1.5 while
constraining the keyway length to less than 1.5 times the diameter of the shaft to prevent excessive
twisting and shaft deflection.

3. Results
3.1 Gears

Below are listed the parameters and calculated safety factors of our final gear designs for each
gear. The following tables include proof of requirement satisfaction as well as the weights of the
gears.

Table 31: Gear Geometrical Parameters and Safety Factors.
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. . . Bending Pitting
Gear Dllametral Number F.a ce 'Bore .PltCh Plt?h Safety Safety
Numb pitch, py fteeth. N | Width, | Diameter el | eilis, e s Factor
umber- 1 ytooth/ing | ¢ "™ N | Fling | ,D,[in] | dp[in] | 7, [in] N P
fb fc
1 12 34 0.75 0.9 2.83 1.415 2.19 1.52
2 12 80 0.75 1.2 6.67 3.335 2.07 2.41
3 12 80 0.75 1.2 6.67 3.335 2.07 2.41
4 8 20 2 1.71 2.5 1.25 2.17 1.51
5 8 20 2 1.71 2.5 1.25 2.17 1.51
6 8 56 2 1.65 7 3.5 2.79 2.55
Table 32: Proof of Requirement Satisfaction for Gears.
Material High Grade, 2.5 % Chrome, Nitrided Steel
Maximal Length in wing axis [in.] 16.337
Length in vertical axis [in.] 7.25
Output RPM 834.8
Minimum Safety Factor for Bending Failure 2.07
Minimum Safety Factor for Pitting Failure 1.51
Pitch Diameter Within values for coarse gears
Contact Ratio for Gearset 1 1.534
Contact Ratio for Gearset 2 1.479
Center distance between gears 2 and 3 [in.] 9.5
Center distance between gears 4 and 5 [in.] 9.5

Table 33: Gear Volume and Weights.

Gear Number Volume [in.}] Weight [1bs.]

1 4.26 1.182
2 24.52 6.804
3 24.52 6.804
4 5.42 1.504
5 5.42 1.504
6 72.46 20.11

Total 136.6 37.91

3.2 Shafts

Table 34: Shafts Diameter Final Values.
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Location Diameter Value [in] Nom'[il;f"gth P N,
dpy 0.7974 1.00 3.461049275 | 2.023382653
do.mput 1.0000 2.00 6728180883 | 3.975620078

Input shaft

deq 0.9000 1.00 2.866643986 | 1.687522483
dgo 0.7974 0.65 3.461049275 | 2.023382653
dps_pa 0.9842 1.00 2766221132 | 1.617175431
. deyca 1.2000 0.75 2308087871 | 1.585494234
Integﬁl:f‘:late Ao Intermediate 1.8000 3.00 2096304622 | 3.481269528
doaos 1.7100 2.00 1.509639182 | 2.247030921
dps_po 0.9842 1.00 2766221132 | 1.617175431
dpe 1.5748 1.00 1822166948 | 1792473313
dge 1.6500 3.50 2329302164 | 1.516939676
Output Shaft |  do.output 1.7000 1.00 4.066597775 | 2.787034707
dps 1.5748 3.94 1.822166948 | 1792473313
dprop 13600 0.50 2601301992 | 1.520761165

3.3 Bearings

Table 35: Bearing Names and General Specifications. Bearings from SKF' [4]

Bearing | Bearing Name | Bore Bearing Type Weight
Number Diameter
[in] (Ibs.)
Bl SKF N204 ECP | 0.787 Single row cylindrical roller bearing 0.2381
B2 SKF N204 ECP | 0.787 Single row cylindrical roller bearing 0.2381
B3 SKF NU1005 0.984 Single row cylindrical roller bearing 0.183
B4 SKF NU1005 0.984 Single row cylindrical roller bearing 0.183
B5 SKF NJ 2305 0.984 Single row cylindrical roller bearing 0.8598
ECML
B6 SKF  NUI1008 | 1.575 Single row cylindrical roller bearing 0.4894
ML
B7 SKF NJ 2305 0.984 Single row cylindrical roller bearing 0. 8598
ECML
B8 SKF 33208 1.575 Single row tapered roller bearing 1.583

Table 36: Desired Design Requirements and the Corresponding Bearing Properties.

Desired Design Requirements and the Corresponding Bearing Properties

Number of Cycles Applied Loading Rotational Speed
Desired
number of | Calculated Desired Max Rated
Bearing cycles L1 P (Ib) C 0 (Ib) RPM RPM
Bl 6.60E+08 | 2.269E+18 | 0.788 4,946 5,500 19,000
B2 6.60E+08 | 2.287E+19 | 0.394 4,946 5,500 19,000
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B3 2.806E+08 | 9.960E+09 | 126.3 2,967 2,338 18,000
B4 2.806E+08 | 1.224E+10 | 118.7 2,967 2,338 18,000
BS 2.806E+08 | 3.292E+09 | 793.3 12,364 2,338 22,000
B6 1.002E+08 | 3.275E+10 | 177.3 5,845 835 18,000
B7 2.806E+08 | 3.343E+09 | 789.6 12,364 2,338 22,000
BS 1.002E+08 | 1.245E+09 | 2,124.1 29,675 835 8,500
3.4 Keys

After performing the calculations in Section in 2.4, we determined the dimensions for our keyways
and keys that satisfy our constraints.

Table 37: Key Dimensions.

Key # Dimensions (1 x w x h) [in] Npearing Nshear

1 0.5 0.25 0.25 1.80 2.50

2 0.75 0.25 0.25 1.53 2.12

3 0.75 0.25 0.25 1.53 2.12

4 0.5 0.375 0.375 2.18 3.03

5 0.5 0.375 0.375 2.18 3.03

6 1.25 0.375 0.375 1.88 2.61
3.5 Gearbox Dimensions and Weight

Total Weight 47.38 lbs

Gearbox Dimensions 16.7x 11.2 x 7.25 [in]

Final RPM 834.82 RPM

Gear Ratio 6.5881

The technical drawings of the gearbox assembly are located in the Appendix, Section 6.

4. Conclusion

Through an iterative design process, our group designed a gearbox that weights 47.38 Ibs., has a
dimension of 16.7 x 11.2 x 7.25 in., has a final output rotational speed of 834.82 RPM with a gear
ratio of 6.5881, which is suitable to use as a gearbox for the Solar Impulse airplane’s electric
population system. By assuming a continuous, worst-case max loading scenario, we tested all the
components of our design accordingly for a total operating time of 2,000 hours subject to all
relevant failure conditions and assumed a high degree of reliability. As a result, we were able to
satisfy all design criteria (including the gearbox dimensions, operating life of 2,000 hours),
matched the rotational output speed within 0.18 RPM of the target 835 RPM (which we judge to
be sufficiently close), and minimized the weight to 47.38 lbs., making our gearbox a desirable
proposed design for the Solar Impulse airplane. Eventually, other materials for the parts with high
strength-to-weight ratio such as composites and other strong metals such as titanium could be
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considered. Provided that the necessary properties are available in trustworthy literature, the
weight could be minimized even more.
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5. Annex

Annex A: Figures.

Ga
G
S'm 4 G_'a =i
GRS
Se or Sf
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—Sye compression 0 tension Sy Sut

Figure 6: An "Augmented" Modified-Goodman Diagram for an Even Material (Norton, 2020).

S, =0.58, for S, <200 kpsi (1400 MPa)
steels:
S, =100 kpsi (700 MPa) for S, =200 kpsi (1400 MPa
) S, =045, for S, <60 kpsi (400 MPa)
irons:
S, =24 kpsi (160 MPa) for S,, =60 kpsi (400 MPa)
Sf-_\ =048, for S, <48 kpsi (330 MPa)
aluminums: @3Es
S, =19kpsi (130 MPa) for S, =48 kpsi (330 MPa)
@sE8
Sf- =048, for S,, <40 kpsi (280 MPa)
@sEs

copper alloys:
ppe Y P 14 kpsi (100 MPa) for S, =40 kpsi (280 MPa)
@SES

Figure 7: Uncorrected Endurance Limits for Various Materials [1].

for d<0.3in (8 mm): Cyize = 1
for 0.3in<d <10 in: Cyie = 0.8694°097
for 8§ mm <d <250 mm: Cyize = 1.189470-097

Figure 8: Size Factors Calculations Guidelines [1].
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FIGURE 12-24
Bending Strength Life Factor K,  Source: Extracted from AGMA Standard 2001-D04, Fundamental Rating Factors and Calculation Methods for
Involute Spur and Helical Gear Teeth with the permission of the publisher, American Gear Manufacturers Association, 1001 N. Fairfax St., Suite 500,
Alexandria, VA 22314.

Figure 9:Bending Strength Life Factor, K, [1].
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FIGURE 12-26

AGMA Surface-Fatigue Strength Life Factor C;  Source: Extracted from AGMA Standard 2001-D04, Fundamental Rating Factors and Calculation
Methods for Involute Spur and Helical Gear Teeth with the permission of the publisher, American Gear Manufacturers Association, 1001 N. Fairfax St.,

Suite 500, Alexandria, VA 22314.

Figure 10: Surface-Fatigue Strength Life Factor, C.[1].



Factors V, X, and Y for Radial Bearings

In Relation to Single Row :
the Load the Bearings 1) Double Row Bearings  2)
Bt Inner Ring is
ng Type . K, . F,
Rotat- | Station- T 37 e ¢
ing ary FF, FF, FF,
V ¥V X ¥ X Y X Y
3 4) 5)
F, F,
La =te .
Radial G |iZ2D%
ontact i
Groove 0.014 25 2.30 2.30 019
Ball 0.028 50 1.99 1.9 0.22
Bearings 0.056 100 1.71 1.71 0,26
0 084 150 1.55 1.55 028
0.11 200 1 1.2 056 1.45 1 0 0356 1.45 0.30
0.17 300 1.31 1.3 0.34
028 500 1.15 1.15 0.38
0.42 750 1.04 104 0.42
0.56 1000 1.00 1.00 0.44
2° * * 041 | 100 * 109 | 070 | 163 0.57
25° 0.41 0 87 0.9 0.67 1. 44 0.68
30° 1 1.2 0139 076 1 078 0.63 1.24 0.80
3s° 0.37 0.66 0. 66 060 1.07 0.95
40° * * 0.35 0.57 * 0.55 0.57 0.93 1.14
Self-Aligning 1 1 040 [0.4cota 1 042cotea| 0.65 |D65cotal L5tana
Ball Bearings
Self-Aligning and 1 12 040 [0 4cota 1 045 cota| 0.67 |067 cota| 1.5 tana
Tapered Roller Bearings

1) For single row bearings, when ‘_F;‘_ SeruseX=1land ¥V = 0.
r
For two single row angular contact ball or roller bearings mounted “face-to-face” or “back-to-back” the values of X and ¥

which apply to double row bearings. For two or more single row bearings mounted “in tandem” use the values of X and ¥
which apply ro single row bearings.
2) Double row bearings are presumed to be symmetrical.

3) Permissible maximum value of g—: depends on the beaning design.
4) Cyis the basic static load rating.
V Units are pounds and inches.
alues of X, ¥ and ¢ for a load or contact angle other than shown in the table are obtained by linear interpolation.

FIGURE 11-24

V, X, and Y Factors for Radial Bearings Excerpted with permission from SKF roller bearings catalogue, 2012. Copyright SKF Group 2012.



ANNEX B: Tables

Table 38:Nominal Key Widths for Various Shaft Diameters [1].

Table 39: Coefficients for Surface-Factor [1].

Table 6-3  Coefficients for Surface-Factor Equation 6.7e

Shaft Diameter (in)

Nominal Key Width (in)

0312<d< 0437
0437 <d < 0562
0562 <d< 0.875
0.875 <d < 1.250
1.250<d < 1.375
1375<d< 1.750
1750 <d < 2.250
2250<d< 2.750

0.093
0.125
0.187
0.250
0.312
0.375
0.500
0.625

Some data taken from Shigley, Mischke and Budynas, Mechanical Engineering
Design, 7th ed., McGraw-Hill, New York, 2004, p. 329

For 5, in MPa, use

For S, in psi, use

Surface Finish A b A b

Ground 158 -0.085 2.411 -0.085
Machined or cold-rolled 451 -0.265 16.841 -0.265
Hot-rolled 57.7 -0.718 20529 -0.718
As-forged 272 -0.995 38545.0 -0.995

Table 40: Reliability Factors [1].
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Reliability % C

reliab

50

90

95

99

99.9
99.99
99.999
99.9999

1.000
0.897
0.868
0.814
0.753
0.702
0.659
0.620

Table 41: Reliability Factors for a Weibull Distribution.

Reliability Factors R

for a Weibull Distribution
Corresponding to the
Probability of Failure P

P%  R% K,

50 50 50

10 90 1.0
5 95 0.62
4 9 0.53
3 97 0.44
2 98 0.33
1 99 021
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Gear Tables

Table 12-2 Table 12-6

Standard Diametral Pitches Suggested Gear Quality

Coarse Fine Numbers for Various
(pq > 20) (pq220) Applications

1 20 Application o,

1.25 24 Cement mixer 3-5

1.5 32 Cement kiln 5-6

1.75 48 Steel mill drives 5-6

2 64 Cranes 5-7

25 72 Punch press 5-7

3 80 Convey.or 5-7
Packaging

4 96 machinery 6-8

5 120 Power drill 7-9 Table 12-7

6 \anggﬁmg 810 Suggested Gear Quality

) o Numbers versus Pitch
Printing press 9-11 Line Velocity

10 Automotive = -

12 transmission 10-11 Pitch Velocity oy

14 Marine 0-800 fpm 6-3
transmission 10-12

16 800-2000 fpm 8-10

Aircraft engine
18 drive 10-13 2000-4000 fpm  10-12

Gyroscope 12-14 Over 4000 fpm  12-14

R ————==—=—=—=—=—=—————— i\
Table 12-13 AGMA Bending Geometry Factor J for 25°, Full-Depth Teeth with HPSTC Loading

Pinion teeth
T 12 14 17 21 26 35 55 135
P G P G P G P G P G B G P G P G

12 U U

14 U ] 033 0233

17 U ] 033 036 036 036

21 U U 033 039 036 039 039 039

26 U U 033 041 037 042 040 042 043 043

35 U U 034 044 037 045 040 045 043 046 046 046

55 U U 034 047 038 048 041 049 044 049 047 050 051 051

135 u U 035 051" 0.38 052 042 @53 045 053 0480548 053 056 057 057
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Table 12-16

Load Distribution Factors K Table 12-17 Application Factors K,

Face Width Kin Driven Machine
in  (mm) Driving Machine Uniform Moderate Shock Heavy Shock
<2 (50) 1.6 Uniform )
6 (1 50) 17 (Electric motor, turbine) 1.00 1.25 1.75 or higher
' Light Shock . 1.25 150 2.00 or higher
9 (250) 18 (Multicylinder engine)
Medium Shock )
220 (500) 2.0 (Single-cylinder engine) 1.50 155 2.25 or higher

Table 12-18 Elastic Coefficient C, in Units of [psil®-5 ( [MPa]®> )

EP Gear Material

Pinion psi Steel Malleable Nodular  Castlron Aluminum Tin
Material (MPa) Iron Iron Bronze Bronze
Steel 30E6 2300 2180 2160 2100 1950 1900
(2E5) (191) (181) (179) (174) (162) (158)

Malleable 25E6 2180 2020 2070 2020 1900 1850
Iron (1.7E5) (181) (174) (172) (168) (158) (154)
Nodular 24F6 2160 2070 2050 2000 1880 1830
Iron (1.7E5) (179) (172) (170) (166) (156) (152)
Cast Iron 22F6 2100 2020 2000 1960 1850 1800
(1.5E5) (174) (168) (166) (163) (154) (149)

Aluminum  17.5E6 1950 1900 1880 1850 1750 1700
Bronze (1.2E5) (162) (158) (156) (154) (145) (141)
Tin 16E6 1900 1850 1830 1800 1700 1650
Bronze (1.1E5) (158) (154) (152) (149) (141) (137)

TThe values of £, in this table are approximate and v = 0.3 was used as an approximation of Poisson's ratio for all
materials. If more accurate numbers are available for £; and v, they should be used in equation 11.23 to obtain C),.

Table 12-19
Reliability Factor K,

Reliability % K

R

90 0.85
99 1.00
99.9 1.25
99.99 1.50
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Table 12-20 Bending-Fatigue Strengths Sg," for a Selection of Gear Materials™"

Material  Class Material Heat Treatment Minimum Bending-Fatigue Strength
Designation Surface Hardness psi x 103 MPa
Steel A1—A5 Through hardened <180 HB 25—33  170—230
Through hardened 240 HB 31—41 210—280
Through hardened 300 HB 36—47  250—325
Through hardened 360 HB 40—52  280—360
Through hardened 400 HB 42—56  290—390
Flame or induction hardened Type A pattern 50—54 HRC ~ 45—55  310—380
Flame or induction hardened Type B pattern 22 150
Carburized and case hardened ~ 55—64 HRC 55—75  380—520
AlSI 4140 Nitrided 84.6 HR15N 34—40 230—310
AlSI 4340 Nitrided 83.5 HR15N 36—47 250—325
Nitralloy 135M  Nitrided 90.0 HR15N 38—48  260—330
Nitralloy N Nitrided 90.0 HR15N 40—50  280—345
2.5% Chrome  Nitrided 87.5—90.0 15N 55—65  380—450
Castiron 20 Class 20 As cast 5 34
30 Class 30 As cast 175 HB 85 59
40 Class 40 As cast 200 HB 13 90
Nodular  A-7-a 60-40-18 Annealed 140 HB 22—33 152—228
‘d;'r‘:)t:e) A7-c  80-55-06 Quenched and tempered 179 HB 2233 152—228
A-7-d 100-70-03 Quenched and tempered 229 HB 27—40  186—276
A-7-e 120-90-02 Quenched and tempered 269 HB 31—44  213—303
Malleable A-8-c 45007 165 HB 10 70
(P;;‘r’lri'tic) A-8-e 50005 180 HB 13 90
A-8-f 53007 195 HB 16 110
A-8-i 80002 240 HB 21 145
Bronze Bronze 2 AGMA 2C Sand cast 40 ksi min tensile strength 5.7 40
Al/Br3  ASTM B-148 Heat treated 90 ksi min tensile strength 23.6 160
alloy 954

*Some data extracted from AGMA Standard 2001-D04, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth,
with the permission of the publisher, American Gear Manufacturers Association, 1001 N. Fairfax St., Suite 500, Alexandria, VA 22314.
T Rockwell 15N scale used for case-hardened materials see Section 2-4
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Table 12-21 Surface-Fatigue Strengths S¢.' for a Selection of Gear Materials™T

Material  Class Material Heat Treatment Minimum Surface-Fatigue Strength
Designation Surface Hardness psi x 103 MPa
Steel A1-A5 Through hardened <180 HB 85-95 590-660
Through hardened 240 HB 105-115 720-790
Through hardened 300 HB 120-135 830-930
Through hardened 360 HB 145-160  1000-1100
Through hardened 400 HB 155-170  1100-1200
Flame or induction hardened 50 HRC 170-190  1200-1300
Flame or induction hardened 54 HRC 175-195  1200-1300
Carburized and case hardened 55-64 HRC 180-225  1250-1300
AlSI 4140 Nitrided 84.6 HR15NT 155-180  1100-1250
AlSI 4340 Nitrided 83.5 HR15N 150-175  1050-1200
Nitralloy 135M  Nitrided 90.0 HR15N 170-195  1170-1350
Nitralloy N Nitrided 90.0 HR15N 195-205  1340-1410
2.5% Chrome Nitrided 87.5 HR15N 155-172  1100-1200
2.5% Chrome Nitrided 90.0 HR15N 192-216  1300-1500
Castiron 20 Class 20 As cast 50-60 340-410
30 Class 30 As cast 175 HB 65-75 450-520
40 Class 40 As cast 200 HB 75-85 520-590
Nodular A-7-a 60-40-18 Annealed 140 HB 77-92 530-630
(d‘i‘r‘:)t;'e) A7-c  80-55-06 Quenched and tempered 180 HB 77-92  530-630
A-7-d 100-70-03 Quenched and tempered 230 HB 92-112 630-770
A-7-e 120-90-02 Quenched and tempered 230 HB 103-126 710-870
Malleable A-8-c 45007 165 HB 72 500
(p;:r’lfi‘tic) A8-e 50005 180 HB 78 540
A-8-f 53007 195 HB 83 570
A-8-i 80002 240 HB 94 650
Bronze Bronze 2 AGMA 2C Sand cast 40 ksi min tensile strength 30 450
Al/Br3  ASTM B-148 Heat-treated 90 ksi min tensile strength 65 450
78 alloy 954

*Some data extracted from AGMA Standard 2001-D04, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth,
with the permission of the publisher, American Gear Manufacturers Association, 1001 N. Fairfax St., Suite 500, Alexandria, VA 22314.
T Rockwell 15N scale used for case-hardened materials—see Section 2-4



Annex C: Gear Sample Calculation

As specified, a sample calculation for the safety factors of gear 4 is shown.

Geometrical Parameters

diametral pitch,p; = 8
pinion number of teeth, N, = 20

gear number of teeth, Ny = 56

16
Initial face width,F = — = 2 in.

Pa
N, 20
Pitch diameter,d, = — = — = 2.5in.
pa 8

Pitch radius,r, = 7;3 = 1.25in.

Center distance between gears 4 and 6,C = 4.75 in.

0.157 . . )
Clearance,c = > This parameter is added for manufacturing purposes.
d

Bore diameter, D, = 1.71 in.

To determine tooth depth, the addendum and dedendum diameters are required.

2 2
Addendum Diameter,D, = dp + p_ =25+ 3 = 2.75in.
d

. 1 1 0.157
Dedendum Diameter,Dy; = d,, — 2 (E + c) =d, -2 (a + o ) =25-— 2(
Dy =221in.
Tooth depth,hy = (D, — Dg)/2 = 0.27 in.
Rim depth,t, = (Dg — D,)/2 = 0.25 in.

addendum coef ficient,x, =0

4
8

0.157
Pa

)
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Input Torque

in—1b
60hp | 6600 ﬁ;
P
T, = —2% = s = 687.6 lbs
@1 5500 rpm (m) —~ /rpm
Rotational velocity of gear 4
_ w; _ (5500rpm) 5500
Wy = e &1 =780 - 2337.5rpm
N, 34

Tangential velocity of gear 4
Vi = wyr, = (2337.5rpm)(1.25 in.)(2m)(1ft/12 in.) = 1529.9 fpm

Tangential force of gear 4

80
w, =1e_To _Tixma 87 (33) = 1296.4 lbs
47 T T 1.25 '

Stress factors
As explained previously, K,,, K,, K, K;, iy, Cy, Cs, Cp, Cp were already determined using the
assumptions described in section 2.1 of this report.

e Bending Strength Factor, J
J is determined by interpolating the values in table 12-13 for N,, = 20 and N, = 54.
J = 0.4025

e Surface Geometry Factor, [

1+ x,\° T
pp = (rp + p) - (rpcosd))2 — —cos¢
Pa Pa

14 0\? T
pp = (1.25 + T) — (1.25 cos25)?% — §C0525 = 0.423

pg = Csing — p,

pg = 4.75sin25 — 0.423 = 1.584
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cos25
I = = 0.1109

(1.5184 t 0.4123) 2.5

e Dynamic Factor, K, C,
Note Q,=11;

K—C—( A )
Y 4+ 1,

,_(z-@) _(2-113
_(2oep (z-dnr

A =50+56(1—B)=50+56(1—0.25) =92

K—C—< 4 )B—< o )025—09152
R V'S 92 +,/1529.9 fpm '

0.25

e Rim-Thickness Factor, Kg

tr
hy

0.25 in.
)+3.4=—2( )+3.4=1.548

Ky = —2(
B 0.27 in.

Bending and Surface-Contact Stresses
thdKaKmKsKBKI
FJK,

_(1296.4)(8)(1)(1.6) (1) (1.548) (1)
% = (2)(0.4025)(0.9152)

’WC C,.C.C
Surface — contact stress, o, = Cp tFaITTZ,Sf
v

g, = (2300) J (1296.4) (1) (1.6)(1) (1)

Bending stress, 0}, =

= 34,976.84 psi

(2)(0.1109)(2.5)(0.9152) 147,026.091 psi.
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Strength factors

As explained previously, Ky, Kg,, Cr, Cg, Cy were already determined using the assumptions

described in section 2.1 of this report.

6.6 X 108 _ 6.6 108

Number of load cycles for gear 4,N;, = = =2.81x108

Mp1My; (%) (1)

K, = 1.3558 N; %9178 = 13558 (2.81 x 108)~00178 = 0,9590

C, = 1.4488 N; %923 = 1,4488 (2.81 x 10%)7%023 = 0.9262

Corrected Bending and Surface-contact fatigue strengths

S K, S 0-9590 (65000) = 62,335.54 psi
= — ] = — = , . Sl
P KKy TP T (DD P
C,Cy (0.9262)(1)
Sre CCSre DD (216000) = 200,059.76 psi

Bending and surface-contact safety factors for gear 4
_ Spp 62,335.54 179
b~ G, ~ 1859532

Src  200,059.76

N = o ———
fe ™ 6.~ 147,026.091

1.51
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Annex D: Shafts Calculations
Preliminary Calculations
As a reference, the design process for the output and input shafts will be displayed.

First, the preliminary parameters were calculated. From the values of stress concentration factors,
the fatigue concentration factors could be calculated using the notch sensitivity. Note the sample
calculation using the value in bending. The same process was done for all different factors.

Kr=1+q(K —1)
K; =1+ 0.50(3.5— 1)
K; = 2.25

Next, the selected material of machined AISI 1020 Steel was used to calculate the endurance
strength. From Figure 7, it can be found that the uncorrected endurance strength for steels is half
the ultimate strength, considering that this material’s ultimate tensile strength is below 200 kpsi.

S,' = 0.5S,,

S,’ = 0.5 % 65 000 = 32 500 psi

To calculate the corrected endurance limit, equation (A) in the Theoretical Development section
is used. The adequate coefficients were also chosen based on the corresponding factors.

Se = CloadCsizeCsurfCtempCreliabSe,
Csurf = A(Sut)b
Csurp = 4.51(65000)7026°

Coury = 0.84

The corrected endurance limit can be calculated.
S, = (1)(1)(0.84)(1)(0.62)(32500) = 16926 psi

To justify the affirmation that Kr = Kf,,, the maximum nominal stress will be compared to the

ratio of yield stress over the fatigue concentration factor. The maximum nominal stress will be
calculated for maximum loading of the input shaft, i.e. d, and will be compared with the bending
fatigue concentration factor.

47



3 3
Omaxnom = J(z.zs * 1.5762) +7 (157 x 0)2 + \/(2.25 *0)2 + 7 (157 * 687.55)?

Omaxnom = 938.31 psi

S, 38000 , .
Ff =—>55 = 16889 psi > 0maxnom = 938.31 psi

Hence, the assumption is valid.

Input Shaft

Torque calculations:

P 60)(6600
_2_ DO _ a7 551 in

©  (5500) (2

Moments and forces calculations:

zMA: _Wcl*a‘l' FBl*(a+b)=O

_ Wei(a) _ (1.18215)(2)

Note that W, refers to the weight of the gears and Fp, to the reaction force of BI.

ZFy= _WGl+ FBl+FBZ =0

Mg, = 0 (from geometry)
Mg, = Fpq xa — (Wg, + Fgp) * (b) = (0.7881)(2) — (1.18215 + 0.39405) * (1)

Mg, = 01lb *in



Diameters Calculations

Calculating the diameters using equation (B), based on fatigue failure,

3 3
32(1.5) \/(2.25 * 1.5762)% + 1(1.57 *0)?2 . \/(2.25 * 0)? + 1(1.57 * 687.55)2

s 16926 65000

do = 0.6063609 in

T | 16926 65000

|

d, = 0.7252399 in

4 {32(1_5) [\/(2.5 * 1.5762)2 +%(2.7 * 0)? . \/(2.5 * (0)? +%(2_7 * 687_55)2]3
J

1

3
32(1.5) [\/(2-25 * 0)? +%(1-57 +0)?2 J(2.25 * 0)2 +%(1.57 * 687.55)21
d2 = l 16926 + 65000 }

/A

QU
N)
Il

0.6034446 in

Now calculating the diameters using equation (H), based on yielding failure,

32(1.5) \/(2.25 x1.5762)? +%(1.57 x 0)? . J(2.25 *0)2 +%(1_57 + 687.55)2

R 38000 38000
dy = 0.7225958 in

1
3

d]_:

3 3
32(1.5) \/(2-5 * 1.5762)% + 7 (2.7 0)? N \/(2.5 *0)2 +7 (2.7 * 687.55)?
T 38000 38000

d, = 0.8563459 in

1
3

1
3
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(

. 32(1.5)[\/(2-25*
z-i -
|

0)2 +%(1.57 % 0)2 J(2.25 * 0)2 +%(1.57 * 687-55)2P
38000 + 38000 Jf

d, = 0.7216844 in

Safety factors calculations:

The final factor of safety values was hence calculated using equations (FF) and (GG). Below is a

sample calculation for the diameter d.

-1

[ 2 3 2 2 3 2]
N nd? |y (KMa)™ + 7 (KpsTa) N (KrmMm)™ + Z (KpsmTm)
Y S, Sut ‘
_ 3 3 -1
13 J(Z.ZS * 1.5762)% + Z (1.57 x 0)? J(Z.ZS * 0)? + v (1.57 = 687.55)2]
N. =
f =32 16926 + 65000 JI

Ny = 6.728180883

-1

[ 2 3 2 2 3 2
nd? \/ (KMa)” + 7 (KfsTa) J (KpmMm)” + 7 (KromTm)
N, = +
32 s, s,
_ 3 3 -1
13 \/(2.25 * 1.5762)2 + 2 (1.57 * 0)? J(Z.ZS *0)? + 2 (1.57 * 687.55)2
N. =
Y32 38000 + 38000

N,, = 3.975620078

Output Shaft

Diameters calculations:

The same process as outlined in the input shaft calculations can be applied to calculate the moments
for the output shaft. However, the diameters were calculated iteratively using an excel spreadsheet.
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The diameters based on the fatigue factors of safety were calculated using equation (D) above.

Diameters were selected when the factor of safety approached the desired value of 1.5.

‘

2 3

32225+ 1773165882 j( mdy mdo

1.5 = A

4% 2.25 « 1000)2 '3 <16 «1.57 « 4537.3398

;

16926 * md,> 65000

dy = 1.47590 in

p

2 3

md,

\
4525 1000>2 '3 <16 £ 2.7 % 4537.3398)2

32+25+177.3165882 j( nd,
16926 * md,> 65000

\

d, = 1.42474 in

p

2 3

32 % 2.25 * 868.3014219 J( nd, nd,

4% 2.25 « 1000>2 '3 <16 «1.57 x 4537.3398

;

+
16926 * md,’ 65000

\

d, = 1.47585 in

\
<4 £ 2.25 1000)2 '3 <16 « 1.57 * 4537.3398)2
32 % 2.25 % 0 nd;’ nds’

1.5 = A« + >
16926 * wd;® 65000

p

\ J

ds = 1.21871 in

Finally, the corrected diameters were calculated using equation (30) above.
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‘

\
<4 % 2.25 * 1000)2 '3 <16 «1.57 * 4537.3398)2
32+ 2.25 + 1773165882 dy’ ndy®
38000 * mrd,” 38000

1.5 = A

d, = 1.38238 in

‘

.
(4 2.5 % 1000>2 '3 <16 £ 2.7 % 4537.3398)2
32525 +177.3165882 nd,* nd,®
38000 * mrd;> 38000

\ J

d, = 1.64390 in

p

\
452.25 1000>2 '3 <16 «1.57 * 4537.3398)2

32  2.25 * 868.3014219 j( nd,” nd,’
1.5 = | 3 + >
38000 * rd, 38000

\ J

d, = 1.48391 in

‘

.
<4 % 2.25 * 1000)2 '3 <16 «1.57 * 4537.3398)2
32 % 2.25 % 0 nd;’ nd;’

1.5 = 1 +
38000 * mds> 38000

\ J

ds = 1.35380 in

The factors of safety for the final diameters can be calculated in the same fashion as in the
sample calculations for the input shaft.
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Annex E: Bearing Calculations

Sample Calculation for Combined Radial and Thrust Loading for Bearing 8

We run calculations for an SKF 33208 single row tapered roller bearing, at a location that
experiences both axial and radial loading.

First, we want to verify that the bearing’s rated operating speed is greater than the maximum
anticipated operating speed, with a safety factor of SF=1.5:

Wygted > SF X Wmax anticipated
8,500 rpm > 1.5 X 835 rpm
8500 rpm > 1,252.5 rpmv/

Second, we want to verify that the bearing’s load ratings are greater than the applied loads on the
bearing with a safety factor of SF=1.5:

Froqction = Ey + E. = 417.97 Ib + 1,000 Ib = 1,417.97 Ib
Co = 29,675 Ib > SF X Frogerion = 1.5 X 1,417.9 Ib = 2,126.85 lb
29,675 b > 2,126.85 bV’

Next, we want to verify that the bearing’s estimated number of cycles is larger than the
anticipated number of cycles that the bearing will experience while in operation:

F, 1000 b

- =337x10°2
C, 296751 oo *10

0.0337-0.022

From Fig. 11-24 from Norton, we get e = 0.22 +
0.056—0.022

x (0.26 — 0.22) = 0.234

F, 1000 Ib

= = 2_
V-E 1-417971b 39

Where we set V=1, as the inner ring of the bearing rotates in our setup.

We observe that :‘;r =2.34> e = 3.37 x 1072, From Fig. 11-24 from Norton, we determine
that:
X=0.56
Y =199 4 20337 = 0022 ) 199y = 1.89
0.056 — 0.022
Y=1.89

We then calculate the equivalent load:
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P=X-V-E.+Y-E,
P =0.56x1x417.97 b+ 1.89 x 1000 Ib = 2,124.1lb

Given this equivalent load, we want to check that the static load rating of the bearing can withstand
the equivalent load with a safety factor of SF=1.5:

Co > P X SF
29,675 1b > 2,124.11b X 1.5
29,675 Ib > 3,186.5 lb

For an additional sanity check, we also observe that F; =417.97 Ib and F. = 1,000 Ib. Even if we
were to take the magnitude of the resulting force vector from the sum of these two components,
we would still satisfy the static load rating. Once again, the main calculation is the one above (to
check that Co > P x SF), though we want to do this following calculation as a sanity check:

Co > SF x JEZ + F2

29,675 1b > 1.5 X 1/(1,0001b)? + (417.97 1b)?

29,6751b > 1,500.3 b

Moving back to load cycle calculations, we then calculate the number of cycles at a L-10 lifecycle.
Since we are using a roller bearing, we use an exponent of 10/3:

10

Ly = (C)? = (28’776 lb)? =5.93 x 103 milli =5.93 x 10°
10 = P = 2’124.1 lb = o. miliion rev = o. rev

Next, we calculate the L-1 lifecycle, as we choose a 1% roller failure rate as our design criteria
from Table 11-5 from Norton:

L1 = KR=0.99 . LlO = 021 X 593 X 109 = 124‘ X 109 rev

We calculate the number of anticipated of loading cycles that the bearing needs to survive,
assuming that the bearing withstands maximum loading throughout the entire flight time:

min
Nanticipatea = 835 rpm X 60? X 2000 hrs = 1.002 x 108 cycles

We then check whether this bearing can withstand the number of anticipated load cycles. We use
a safety factor of SF=1.5:

SF X Nanticipated < Ll

1.5 X 1.002 X 108 rev < 1.24 x 10° rev
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1.503 X 108%rev < 1.24 x 10% revV
In summary, we were able to verify all three design criteria with a safety factor of SF=1.5:

1. The bearing’s certified rotational speed is greater than the rotational speed of its gearbox
shaft.

2. The bearing’s static load ratings are greater than the anticipated applied loads.

3. The bearing calculated lifetime with a reliability of R=0.99 (1% bearing roller failure) is
greater than the anticipated number of cycles.

|

Sample Calculation for Radial Loading for Bearing 7

We run calculations for bearing 7, which experiences radial loading. We are using the SKF NJ
2305 ECML bearing.

First, we want to verify that the bearing’s rated operating speed is greater than the maximum
anticipated operating speed, with a safety factor of SF=1.5:

Wrated > SF X Wpropetier X gear ratio
12,000 rpm > 1.5 X 835 rpm X 2.8
12,000 rpm > 3,507 rpm v/

Second, we want to verify that the bearing’s load ratings are greater than the applied loads on the
bearing with a safety factor of SF=1.5. Based on the textbook example from Norton, we calculate
the magnitude of the sum of the y- and z-direction reaction loads:

P = |F?+ F? =+/(~780.221b)? + (121.351b)2 = 789.6 lb

We then compare the resulting applied load with the bearing’s load ratings:
Co>SFXP
12,364 b > 1.5 x 789.6 lb
12,364 1b > 1,184.4 b v

Finally, we calculate the number of lifecycles that this bearing can withstand. We first calculate
the Lo life of the bearing. As we are using a roller bearing, we set the exponent to 10/3:

10

Lo, = (C)T - (14’388 lb)? = 1.59 x 10* milli = 1.59 x 101
10 = P = 7896 lb = 1. miilion revs = 1. revs

As we want a bearing failure rate of 1% (a reliability rate of 99%), we set the reliability factor
Kgr—99 = 0.21 as defined by Table 11-5 from Norton. We get:
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Ll = KR=0.99 X LlO ES 0.21 X 1.59 X 10107‘8175 == 3.34‘ X 109 revs

We calculate the number of anticipated of loading cycles that the bearing needs to survive,
assuming that the bearing withstands maximum loading throughout the entire flight time. We use
an adjusted gear ratio of 2.8:

min
Nanticipatea = 835 rpm X 60W x 2000 hrs x 2.8 = 2.8056 x 108 cycles

We then check whether this bearing can withstand the number of anticipated load cycles. We use
a safety factor of SF=1.5:

SF % Nanticipated < Ll
1.5 X 2.8056 X 108 rev < 3.34 x 10° rev

4.2084 x 10%rev < 3.34 X 10° revv

Just as we did for bearing 8, we were able to verify the following design criteria for bearing 7
under radial loading, with a safety factor of SF=1.5:

1. The bearing’s certified rotational speed is greater than the rotational speed of its gearbox
shaft.

2. The bearing’s static load ratings are greater than the anticipated applied loads.

3. The bearing calculated lifetime with a reliability of R=0.99 (1% bearing roller failure) is
greater than the anticipated number of cycles.

Bearings 1 to 7 are all bearings that only have a radial load, so the same above calculation can be
applied to these bearings.

Full Bearing Intermediary Calculations

B1 Bearing: Given Data B1 Bearing: Results
Term Value Unit Notes Source Term Value Unit
F_B1 0.788|1b K_R 0.21|N/A
Realworld From problem
RPM 5500|rpm statement P 0.788|lbs
millions of
C 6407 |1b SKF N204 ECP L_10 1.08E+13|revs
(1] 4946|(b SKF M204 ECP L 10 1.08E+19|revs
Limiting
Max RPM 19000 |rpm SKF N204 ECP|speed LP 2.27E+18|revs
Desired RPM 5.600E+08 revs
K_R 0.21 1% failure rate
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B2 Bearing: Given Data

B2 Bearing: Results
Term Value Unit
K_R 0.21|N/A
P 0.394|lhs
millions of
L_10 1.09E+14 |revs
L_10 1.09E+20|revs
L_P 2.29E+19|ravs
B3 Bearing: Results
Term Value Unit
K_R 0.21|N/A
P 126.2551762|lbs
millions of
L_10 A4.7AE+04 | revs
L_10 4. 74E+10|revs
L_P 9.96E+09 |revs
B4 Bearing: Results
Term Value Unit
K_R 0.21MN/A
P 118.6752955]lbs
millions of
L_10 5.83E+04 |revs
L_10 5.83E+10]|revs
L_P 1.22E+10]|revs

Term Value Unit Notes Source
F_B2 0.3594|lb
Realworld From problem
RPM 2500]rpm statement
C 6407 |(lb SKF N204 ECP
co0 4946(lb SKFN204 ECP
Limiting
Max RPM 19000 (rpm SKF N204 ECP|speed
Desired RPM 6.600E+08|revs
K_R 0.21 1% failure rate
B3 Bearing: Given Data
Term Value Unit Notes Source
Fy 34.83342658 | b
Fz 121.3548595|1b
Realworld
RPM 2338 |rpm
C 3192|lb SKF N205 ECP
C0 2967 |lb SKF N205 ECP
Limiting
Max RPM 13000 {rpm SKF N205 ECP|speed
Desired L_10 2.806E+08 |revs
K_R 0.21 1% failure rate
B4 Bearing: Given Data
Term Value Unit Notes Source
Fy -21.95356571(lb
Fz 116.6270411|lb
Real world Propeller max |Problem
RPM 835 [rpm RPM statement
C 3192(lb SKF N203 ECP
CO0 2967|lb SKF N205 ECP
Limiting
Max RPM 18000 |rpm SKF N205 ECP|speed
Desired L_10 2.806E+08 |revs
K_R 0.21 1% failure rate
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B5 Bearing: Given Data

Term Value Unit Notes Source

F_y 783.9571303|lh

F z 121.3548595|lh

Realworld

RPM 835 |rpm

C 14388|1b MJ 2305 ECML

(1] 12364|1b MJ 2305 ECML
Limiting

Max RPM 22000(rpm MNJ 2305 ECML|speed

Desired L_10 2.806E408 |revs

K_R 0.21 1% failure rate

B6 Bearing: Given Data

Term Value Unit Notes Source

F_B6 177.317|lb

Real world Propeller max |Problem

RPM 835|rpm RPM statement

C 6407 |lb WU 1008 ML

Co0 5845|lb WU 1008 ML
Limiting

Max RPM 18000 |rpm MU1008 ML |speed

Desired RPM 1.002E+08 [revs

K_R 0.21 1% failure rate

B7 Bearing: Given Data

Term Value Unit Notes Source

Fy -780.2202912|1b

Fz 121.3548595|lh

Realworld Propeller max

RPM 2338 |rpm RPM

C 14388|1b MJ2305 ECML

co 12364|1b MJ 2305 ECML
Lirniting

Max RPM 22000]|rpm M1 2305 ECML|speed

Desired L_10 2.806E+08 revs

K_R 0.21 1% failure rate

B5 Bearing: Results
Term Value Unit
K_R 0.21|N/A
P 793.2942607 |lbs
millions of
L_10 1.57E+04 |revs
L_10 1.57E+10|revs
LP 3.29E+09|revs
BE Bearing: Results
Term Value Unit
K_R 0.21|N/A
P 177.317 |lbs
millions of
L_10 1.56E+05|revs
L 10 1.56E+11|revs
L_P 3.28E+10|revs
B7 Bearing: Results
Term Value Unit
K_R 0.21|N/A
P 789.6016114|lbs
millions of
L 10 1.59E+04 |revs
L 10 1.59E+10(revs
LP 3.34E+09(revs
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BB Bearing: Results

B8 Bearing: Given Data
Term Value Unit Notes Source
Fa 1000)1h
Fr 417.9727993|1b
Realworld Propeller max
RPM 835|rpm RPM
C 28776|lh 33208
c0 28675|lb 33208
Limiting
Max RPM 8500 rpm 33208 [speed
v 1
= 0.0337
X 0.56
ki 1.89
Desired L_10 1.002E+08 |revs
K_R 0.21 1% failure rate

Annex F: Key Calculations

= 12223.1 psi,

Key 1:
15271
' = 05in+0.25n
1527 1b

Opearing =

% * 0.5in * 0.25in

o' =31 = 21171 psi,

= 24446 psi,

Nbearing =

44000 psi

Ubearl’ng

Term Value Unit
F_a/C_0 0.033698399
F_al/(\V*F_r) 2.392500186
P 2124.064768| b
millions of
L_10 5927.554629 | revs
L_10 5.9276E+09 |revs
LP 1.2448E+09|revs
53000 psi
Nshear = T =2.50
1.80
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6. Drawings

Drawing 6.1: Exploded Gearbox
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Drawing 6.2: Gearbox Exploded Assembly with Labels for Keys
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Drawing 6.3: Input Gear
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Drawing 6.4: Output Shaft
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